蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过。

最小生成树的两个性质:

  • 不同的最小生成树,相同权值使用的边数一定相同。

  • 不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致。

这样我们随便跑一个\(MST\),就可以知道所有\(MST\)边的构造情况。由于性质二,我们可以考虑枚举每一种权值的所有边,保留所有非此权值的树边,看可以连出来多少种不同的最小生成树。也就是按照权值构造最小生成树,这个过程满足乘法原理。

#include <bits/stdc++.h>
using namespace std; #define int long long
const int N = 100 + 5;
const int M = 1000 + 5;
const int Mod = 31011; struct Len {
int u, v, w; bool operator < (Len rhs) const {
return w < rhs.w;
}
}l[M]; vector <Len> v; int n, m, S[N]; int find (int x) {
return S[x] == x ? x : S[x] = find (S[x]);
} vector <int> val, use, tot; vector <int> :: iterator it; void kruskal () {
sort (l + 1, l + 1 + m);
for (int i = 0; i <= n; ++i) S[i] = i;
for (int i = 1; i <= m; ++i) {
int fu = find (l[i].u);
int fv = find (l[i].v);
it = lower_bound (val.begin (), val.end (), l[i].w);
if (it == val.end ()) {
val.push_back (l[i].w);
use.push_back (0);
tot.push_back (1);
} else {
tot[it - val.begin ()]++;
}
if (fu != fv) {
S[fu] = fv;
it = lower_bound (val.begin (), val.end (), l[i].w);
use[it - val.begin ()]++;
v.push_back (l[i]);
}
}
} int mat[N][N]; int gauss (int n) {
int ret = 1;
for (int i = 1; i <= n; ++i) {
for (int k = i + 1; k <= n; ++k) {
while (mat[k][i]) {
int d = mat[i][i] / mat[k][i];
for (int j = i; j <= n; ++j) {
(((mat[i][j] -= d * mat[k][j]) %= Mod) += Mod) %= Mod;
}
swap (mat[i], mat[k]); ret = -ret;
}
}
(((ret *= mat[i][i]) %= Mod) += Mod) %= Mod;
}
return abs (ret);
} void add_edge (int u, int v) {
mat[u][u]++;
mat[v][v]++;
mat[u][v]--;
mat[v][u]--;
} int sep[N]; int solve () {
kruskal ();
if (v.size () < n - 1) return 0;
int ans = 1;
for (int i = 0; i < val.size (); ++i) {
memset (mat, 0, sizeof (mat));
if (use[i] == 0 || tot[i] == use[i]) continue;
for (int j = 0; j <= n; ++j) S[j] = j;
for (int j = 0; j < v.size (); ++j) {
if (v[j].w != val[i]) {
S[find (v[j].u)] = find (v[j].v);
}
}
int cnt = 0;
for (int i = 1; i <= n; ++i) {
sep[++cnt] = find (i);
}
sort (sep + 1, sep + 1 + cnt);
cnt = unique (sep + 1, sep + 1 + cnt) - sep - 1;
for (int j = 1; j <= m; ++j) {
if (l[j].w == val[i]) {
int fu = find (l[j].u);
int fv = find (l[j].v);
fu = lower_bound (sep + 1, sep + 1 + cnt, fu) - sep;
fv = lower_bound (sep + 1, sep + 1 + cnt, fv) - sep;
add_edge (fu, fv);
}
}
(ans *= gauss (use[i])) %= Mod;
}
return ans;
} signed main () {
// freopen ("data.in", "r", stdin);
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
static int u, v, w;
cin >> u >> v >> w;
l[i] = (Len) {u, v, w};
}
cout << solve () << endl;
}

【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...

  2. BZOJ 1016 最小生成树计数(矩阵树定理)

    我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...

  3. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  4. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  5. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  6. spoj104 highways 生成树计数(矩阵树定理)

    https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...

  7. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  8. 【Luogu】P3317重建(高斯消元+矩阵树定理)

    题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...

  9. Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理

    真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...

  10. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

随机推荐

  1. comodo firewall 科莫多离线安装

    comodo firewall是什么?他配有HIPS,配置好规则就可以比杀软强不是一个两个档次,但是新手不建议使用. 注意:不用使用疯狂模式后锁屏,不然系统都打不开. 下载地址: https://do ...

  2. 1.docker 慕课入门

    本文是学习慕课网的实战https://www.imooc.com/learn/824  同时结合菜鸟教程的思想https://www.runoob.com/docker/docker-architec ...

  3. 第七次java实验报告

    Java实验报告 班级 计科二班 学号20188437 姓名 何磊 完成时间 2019/10/25 评分等级 实验四 类的继承 实验内容 )总票数1000张:(2)10个窗口同时开始卖票:(3)卖票过 ...

  4. 【案例分享】在 React 框架中使用 SpreadJS 纯前端表格控件

    [案例分享]在 React 框架中使用 SpreadJS 纯前端表格控件 本期葡萄城公开课,将由国电联合动力技术有限公司,资深前端开发工程师——李林慧女士,与大家在线分享“在 React 框架中使用 ...

  5. python_0基础开始_day11

    第十一节 一,函数名的第一类对象 函数名当作值,赋值给变量 print(函数名) 查看看书的内存地址 函数名可以当作容器中的元素 lis = []dic = {}def func():    prin ...

  6. python-优酷系统管理员视图粗糙版(无详细注释)

    目录 Tank-YouKu(仅管理员功能粗糙版) 优酷系统管理员视图功能 前期准备 创库创表语句 安装pymysql模块 安装DBUtils模块 配置 db_pool 项目架构与数据流向 目录结构 s ...

  7. spark教程(三)-RDD认知与创建

    RDD 介绍 spark 最重要的一个概念叫 RDD,Resilient Distributed Dataset,弹性分布式数据集,它是 spark 的最基本的数据(也是计算)抽象. 代码中是一个抽象 ...

  8. java中的包注意事项

    1:需要导入包的三个地方 a:需要导入第三方的jar包中的类或接口 b:需要导入除了java.lang包的其他包中的类(jdk中的类) c:需要导入自己写的不同包的类 2:引入包的三种方式 a:imp ...

  9. EJS学习(二)之语法规则上

    标签含义 <% %> :'脚本' 标签,用于流程控制,无输出即直接使用JavaScript语言. <%= %>:转义输出数据到模板(输出是转义 HTML 标签)即在后端定义的变 ...

  10. kill指定用户所有进程

    在linux系统管理中,我们有时候需要kill某个用户的所有进程,这里有以下几种方法,以heboan用为例 pkill方式 pkill -u heboan killall方式 killall -u h ...