http://poj.org/problem?id=3621

Sightseeing Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7649   Accepted: 2567

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the
cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city
is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤
1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1
≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they
do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P

* Lines 2..L+1: Line i+1 contains a single one integer: Fi

* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

题意:有n个景点和一些单项道路,到达一个顶点会获得一定的快乐值,经过道路会消耗一定的时间,一个人可以任意选择一个顶点作为开始的地方,然后经过一系列的景点返回原地;每个景点可以经过多次,但是只有经过第一次景点的时候才可以获得欢乐值,并且要旅游至少两个顶点,以保证得到足够的锻炼;问单位时间的欢乐值最大是多少;

分析:该题思路和最优比例生成树有些类似,设第i个点的欢乐值f[i],边权值是w[u][v];

对于一个环比率:r=(f[1]*x1+f[2]*x2+f[3]*x3+……f[n]*xn)/(w[1][2]*x1+w[2][3]*x2+……w[n][1]*xn);

构造一个函数z(l)=(f[1]*x1+f[2]*x2+f[3]*x3+……f[n]*xn)-l*(w[1][2]*x1+w[2][3]*x2+……w[n][1]*xn);

简化为z(l)=sigma(f[i]*xi)-l*sigma(w[i][j]*xi);

变形得:r=sigma(f[i]*xi)/sigma(w[i][j]*xi)=l+z(l)/sigma(w[i][j]*xi);

当存在比l还大的比率的冲要条件是z(l)>0;即z(l)存在正环值就行,所以转化成了求正环的问题;

应该把点权和边权融合成关于边的量:K=f[u]-mid*w[u][v];然后用二分枚举比率mid,当有向连通图中存在正环,就把mid增大,否者减小;

程序:

#include"stdio.h"
#include"string.h"
#include"queue"
#include"stdlib.h"
#include"iostream"
#include"algorithm"
#include"string"
#include"iostream"
#include"map"
#include"math.h"
#define M 1005
#define eps 1e-8
#define inf 100000000
using namespace std;
struct node
{
int v;
double w;
node(int vv,double ww)
{
v=vv;
w=ww;
}
};
vector<node>edge[M];
double dis[M],f[M];
int use[M],n;
double mid;
int dfs(int u)
{
use[u]=1;
for(int i=0;i<(int)edge[u].size();i++)
{
int v=edge[u][i].v;
if(dis[v]<dis[u]+f[u]-mid*edge[u][i].w)
{
dis[v]=dis[u]+f[u]-mid*edge[u][i].w;
if(use[v])
return 1;
if(dfs(v))
return 1;
}
}
use[u]=0;
return 0;
}
int ok()
{
memset(dis,0,sizeof(dis));
memset(use,0,sizeof(use));
for(int i=1;i<=n;i++)
if(dfs(i))
return 1;
return 0;
}
int main()
{
int m,i;
while(scanf("%d%d",&n,&m)!=-1)
{
for(i=1;i<=n;i++)
scanf("%lf",&f[i]);
for(i=1;i<=n;i++)
edge[i].clear();
for(i=1;i<=m;i++)
{
int a,b;
double c;
scanf("%d%d%lf",&a,&b,&c);
edge[a].push_back(node(b,c));
}
double left,right;
left=0;
right=100000;
while(right-left>eps)
{
mid=(right+left)/2;
if(ok())
left=mid;
else
right=mid;
}
printf("%.2lf\n",left);
}
return 0;
}

最优比例生成环(dfs判正环或spfa判负环)的更多相关文章

  1. 01分数规划POJ3621(最优比例生成环)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8218   Accepted: 2756 ...

  2. poj 3621最优比例生成环(01分数规划问题)

    /* 和求最小生成树差不多 转载思路:http://www.cnblogs.com/wally/p/3228171.html 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优 ...

  3. POJ 3621 最优比率生成环

    题意:      让你求出一个最优比率生成环. 思路:      又是一个01分化基础题目,直接在jude的时候找出一个sigma(d[i] * x[i])大于等于0的环就行了,我是用SPFA跑最长路 ...

  4. SPFA找负环(DFS) luogu3385

    SPFA找负环的基本思路就是如果一个点被访问两次说明成环,如果第二次访问时所用路径比第一次短说明可以通过一直跑这个圈将权值减为负无穷,存在负环 有bfs和dfs两种写法,看了一些博客,在bfs和dfs ...

  5. poj 3621 0/1分数规划求最优比率生成环

    思路:以val[u]-ans*edge[i].len最为边权,判断是否有正环存在,若有,那么就是ans小了.否则就是大了. 在spfa判环时,先将所有点进队列. #include<iostrea ...

  6. L - The Shortest Path Gym - 101498L (dfs式spfa判断负环)

    题目链接:https://cn.vjudge.net/contest/283066#problem/L 题目大意:T组测试样例,n个点,m条边,每一条边的信息是起点,终点,边权.问你是不是存在负环,如 ...

  7. 递归型SPFA判负环 + 最优比例环 || [Usaco2007 Dec]奶牛的旅行 || BZOJ 1690 || Luogu P2868

    题外话:最近差不多要退役,复赛打完就退役回去认真读文化课. 题面:P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解:最优比例环 题目实际是要求一个ans,使得对于图中 ...

  8. 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  9. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

随机推荐

  1. MapReduce调度与执行原理系列文章

    转自:http://blog.csdn.net/jaytalent?viewmode=contents MapReduce调度与执行原理系列文章 一.MapReduce调度与执行原理之作业提交 二.M ...

  2. IE屏蔽鼠标右键、禁止复制粘贴等功能

    <body oncontextmenu="return false" onselectstart="return false" ondragstart=& ...

  3. 在对listctrl的控件进行重载的过程中,GetHeaderCtrl()返回NULL的问题

    先谈谈我的问题吧! 在使用listctrl的过程中,我需要在列表头部添加checkbox,实现全选的功能. 经过网上资料的罗列,我找到了一个demo,使用的重绘的方法,在使用的过程中,我发现我的列表头 ...

  4. Unity3D - 详解Quaternion类(一)

    一.简介 Quaternion又称四元数,由x,y,z和w这四个分量组成,是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念.四元数的乘法不符合交换律.从明确地角度而言,四元数是复数的不可交 ...

  5. informatica中的workflow连接远程数据库

    如果是远程oracle这样写 名称随便起,方便自己记住,后面用户名密码你都知道,再加上数据库的地址:端口/SID就可以了. 如10.33.2.208:1521/torcl

  6. 用 python 抓取知乎指定回答下的视频

    前言 现在知乎允许上传视频,奈何不能下载视频,好气哦,无奈之下研究一下了,然后撸了代码,方便下载视频保存. 接下来以 猫为什么一点也不怕蛇? 回答为例,分享一下整个下载过程. 调试一下 打开 F12, ...

  7. CSS background 之设置图片为背景技巧

    首先先来看看background有那些值: 可以按顺序设置如下属性(可点击进入相应的css手册查看使用):background-color 背景颜色background-image 背景图片backg ...

  8. NHibernate初学二之简单执行SQL及HQL、Linq

    上篇文章简单介绍NHibernate之简单增删改查,本文将会简单介绍有关执行NHibernate的SQL.HQL及存储过程: 一:执行SQL语句实例,运用CreateSQLQuery方法 public ...

  9. C#字符串二进制互换

    static void Main(string[] args)         {             string str = "宋军辉";             Cons ...

  10. MFC 小知识总结五

    1 移动无标题对话框   响应WM_NCHITTEST 消息 [cpp] view plaincopy LRESULT CTimeJishiDlg::OnNcHitTest(CPoint point) ...