简单的函数——Min_25筛
就是实现一下Min-25筛 筛积性函数的操作
首先要得到
$G(M,j)=\sum_{t=j}^{cnt} \sum_{e=1}^{p_t^{e+1}<=M} [\phi(p_t^e)*G([M/(p_t^e)],t+1)+\phi(p_t^{(e+1)})]$
$+(F(M)-(F(p_{j-1})))$
先要预处理后面的部分,得到$F(M)$和$F(p_{j-1})$
$F(p_{j-1})$可以直接筛素数的时候前缀和计算一下
$F(M)$就要利用第一步的筛法了
发现,除了2之外的质数都是奇数,所以f(p^1)=p xor 1=p-1
对于2要特判
对于G,直接根据式子大力计算即可。
递归处理。由于值还是比较分散的,所以没有记忆化的必要。(而且状态很多,对空间极为不友好)
剪枝:pri[t]的平方大于n就不用继续算了。
代码:
#include<bits/stdc++.h>
#define il inline
#define reg register int
#define int long long
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=5e5+;
const int M=5e5+;
const int mod=1e9+;
int pri[M],tot;
int sum[M];//pre of prime
bool vis[N];
int sqr;
ll f[N],g[N],h[N];
void sieve(int n){
for(reg i=;i<=n;++i){
if(!vis[i]){
vis[i]=;
pri[++tot]=i;
}
for(reg j=;j<=tot;++j){
if(i*pri[j]>n) break;
vis[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
for(reg i=;i<=tot;++i){
sum[i]=(sum[i-]+pri[i])%mod;
g[i]=(g[i-]+(pri[i]^))%mod;
}
}
int id1[N],id2[N]; ll val[N];
ll n;
int S(int x,int j){
if(x<=||x<pri[j]) return ;
cout<<" xx "<<x<<" jj "<<j<<endl;
int d=(x<=sqr)?id1[x]:id2[n/x];
int ret=(f[d]-g[j-]+mod)%mod;
for(reg t=j;t<=tot&&pri[t]*pri[t]<=x;++t){
int now=pri[t];
for(reg e=;now*pri[t]<=x;now=now*pri[t],++e){
ret=(ret+(pri[t]^e)*S(x/now,t+)%mod+(pri[t]^(e+))%mod)%mod;
}
}
return ret;
}
int main(){
scanf("%lld",&n);
if(n==){
puts("");return ;
}
sqr=sqrt(n);
// cout<<" sqr "<<sqr<<endl;
sieve(sqr);
// cout<<" after sieve "<<endl;
int m=;
for(ll i=,x;i<=n;i=x+){
x=n/(n/i);
val[++m]=n/i;
if(val[m]<=sqr) id1[val[m]]=m;
else id2[n/val[m]]=m;
}
for(reg i=;i<=m;++i){
f[i]=val[i]-;h[i]=(((ll)val[i]%mod*(val[i]%mod+))/-+mod)%mod;
}
for(reg j=;j<=tot;++j){
for(reg i=;i<=m&&(ll)pri[j]*pri[j]<=val[i];++i){
int to=(val[i]/pri[j])<=sqr?id1[val[i]/pri[j]]:id2[n/(val[i]/pri[j])];
f[i]=(f[i]-(f[to]-(j-))+mod+mod)%mod;
h[i]=(h[i]-pri[j]*(h[to]-sum[j-]+mod)%mod+mod)%mod;
}
}
for(reg i=;i<=m;++i){
if(val[i]>=) f[i]=(h[i]-f[i]++mod)%mod;
else f[i]=;
}
//cout<<" after prewrk "<<endl;
printf("%lld",(S(n,)+)%mod);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/1/13 17:03:03
*/
简单的函数——Min_25筛的更多相关文章
- LOJ.6053.简单的函数(Min_25筛)
题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...
- LOJ 6053 简单的函数——min_25筛
题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) ...
- loj 6053 简单的函数 —— min_25筛
题目:https://loj.ac/problem/6053 参考博客:http://www.cnblogs.com/zhoushuyu/p/9187319.html 算 id 也可以不存下来,因为 ...
- LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】
先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...
- LOJ6053 简单的函数(min_25筛)
题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...
- [LOJ6053]简单的函数:Min_25筛
分析 因为题目中所给函数\(f(x)\)的前缀和无法较快得出,考虑打表以下两个函数: \[ g(x)=x \times [x是质数] \] \[ h(x)=1 \times [x是质数] \] 这两个 ...
- min_25筛
min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 ...
- Min_25 筛小结
Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
随机推荐
- Python小白学习之文件内建函数
文件内建函数: 2018-10-24 23:40:02 简单介绍: open()打开文件 read()读取文件(其实是输入文件里的内容到read函数,类似于get(url),所以下面的图片备注的是 ...
- DataRow的RowState属性变化
DataRow的RowState属性(状态)取值有5种:Detached, Unchanged, Added, Deleted, Modified. 当我们用DataRow newRow = Data ...
- AndroidArchitecture
title: AndroidArchitecture date: 2016-04-08 23:26:20 tags: [architecture] categories: [Mobile,Androi ...
- sshpass 指定密码远程 ssh 到服务器 或者 scp 发送文件到服务器
在操作linux时,虽然可以对linux配置免秘钥登录,但是在配置免密码登录之前,是需要登录到其他节点主机的,这里提供一种类似ssh的方式,可以在命令后面加上相应的参数来设置你将要登录的远程主机的密码 ...
- linux 性能分析命令及其解释
很多时候,我们需要对linux上运行的环境大体有一个了解,那么久需要大体知道当前系统的相关资源的使用情况,那么可以用一些linux提供的丰富的命令来查看 性能分析 vmstat 虚拟内存统计 用法 U ...
- Scrum立会报告+燃尽图(Beta阶段第七次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2388 项目地址:https://coding.net/u/wuyy694 ...
- 每日Scrum--No.3
Yesterday:帮着队友一起打开地图 Today:学习迪杰斯特拉算法,试着编写程序代码 Problem:语法逻辑出错,在执行的时候,有的时候出现死循环,有的时候屏幕出现null和乱码.语句的编写有 ...
- CSU 1808: 地铁 最短路
题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1808 1808: 地铁 Time Limit: 5 SecMemory Limit: ...
- 奇异值分解(SVD)原理详解及推导 (转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
- QSet使用及Qt自定义类型使用QHash等算法
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QSet使用及Qt自定义类型使用QHash等算法 本文地址:http://techie ...