poj3608 Bridge Across Islands
地址:http://poj.org/problem?id=3608
题目:
| Time Limit: 1000MS | Memory Limit: 65536K | |||
| Total Submissions: 11259 | Accepted: 3307 | Special Judge | ||
Description
Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input
The input consists of several test cases.
Each test case begins with two integers N, M. (3 ≤ N, M ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].
Output
For each test case output the minimal distance. An error within 0.001 is acceptable.
Sample Input
4 4
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
0 0
Sample Output
1.00000
Source
思路:
两凸包间的最近点对,套模板。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-; /****************常用函数***************/
//判断ta与tb的大小关系
int sgn( double ta, double tb)
{
if(fabs(ta-tb)<eps)return ;
if(ta<tb) return -;
return ;
} //点
class Point
{
public: double x, y; Point(){}
Point( double tx, double ty){ x = tx, y = ty;} bool operator < (const Point &_se) const
{
return x<_se.x || (x==_se.x && y<_se.y);
}
friend Point operator + (const Point &_st,const Point &_se)
{
return Point(_st.x + _se.x, _st.y + _se.y);
}
friend Point operator - (const Point &_st,const Point &_se)
{
return Point(_st.x - _se.x, _st.y - _se.y);
}
//点位置相同(double类型)
bool operator == (const Point &_off)const
{
return sgn(x, _off.x) == && sgn(y, _off.y) == ;
} }; /****************常用函数***************/
//点乘
double dot(const Point &po,const Point &ps,const Point &pe)
{
return (ps.x - po.x) * (pe.x - po.x) + (ps.y - po.y) * (pe.y - po.y);
}
//叉乘
double xmult(const Point &po,const Point &ps,const Point &pe)
{
return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
}
//两点间距离的平方
double getdis2(const Point &st,const Point &se)
{
return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
}
//两点间距离
double getdis(const Point &st,const Point &se)
{
return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
} //两点表示的向量
class Line
{
public: Point s, e;//两点表示,起点[s],终点[e]
double a, b, c;//一般式,ax+by+c=0
double angle;//向量的角度,[-pi,pi] Line(){}
Line( Point ts, Point te):s(ts),e(te){}//get_angle();}
Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){} //排序用
bool operator < (const Line &ta)const
{
return angle<ta.angle;
}
//向量与向量的叉乘
friend double operator / ( const Line &_st, const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
}
//向量间的点乘
friend double operator *( const Line &_st, const Line &_se)
{
return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
}
//从两点表示转换为一般表示
//a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
bool pton()
{
a = e.y - s.y;
b = s.x - e.x;
c = e.x * s.y - e.y * s.x;
return true;
}
//半平面交用
//点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
friend bool operator < (const Point &_Off, const Line &_Ori)
{
return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
< (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
}
//求直线或向量的角度
double get_angle( bool isVector = true)
{
angle = atan2( e.y - s.y, e.x - s.x);
if(!isVector && angle < )
angle += PI;
return angle;
} //点在线段或直线上 1:点在直线上 2点在s,e所在矩形内
bool has(const Point &_Off, bool isSegment = false) const
{
bool ff = sgn( xmult( s, e, _Off), ) == ;
if( !isSegment) return ff;
return ff
&& sgn(_Off.x - min(s.x, e.x), ) >= && sgn(_Off.x - max(s.x, e.x), ) <=
&& sgn(_Off.y - min(s.y, e.y), ) >= && sgn(_Off.y - max(s.y, e.y), ) <= ;
} //点到直线/线段的距离
double dis(const Point &_Off, bool isSegment = false)
{
///化为一般式
pton();
//到直线垂足的距离
double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
//如果是线段判断垂足
if(isSegment)
{
double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
double xb = max(s.x, e.x);
double yb = max(s.y, e.y);
double xs = s.x + e.x - xb;
double ys = s.y + e.y - yb;
if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
td = min( getdis(_Off,s), getdis(_Off,e));
}
return fabs(td);
} //关于直线对称的点
Point mirror(const Point &_Off)
{
///注意先转为一般式
Point ret;
double d = a * a + b * b;
ret.x = (b * b * _Off.x - a * a * _Off.x - * a * b * _Off.y - * a * c) / d;
ret.y = (a * a * _Off.y - b * b * _Off.y - * a * b * _Off.x - * b * c) / d;
return ret;
}
//计算两点的中垂线
static Line ppline(const Point &_a,const Point &_b)
{
Line ret;
ret.s.x = (_a.x + _b.x) / ;
ret.s.y = (_a.y + _b.y) / ;
//一般式
ret.a = _b.x - _a.x;
ret.b = _b.y - _a.y;
ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
//两点式
if(fabs(ret.a) > eps)
{
ret.e.y = 0.0;
ret.e.x = - ret.c / ret.a;
if(ret.e == ret. s)
{
ret.e.y = 1e10;
ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
}
}
else
{
ret.e.x = 0.0;
ret.e.y = - ret.c / ret.b;
if(ret.e == ret. s)
{
ret.e.x = 1e10;
ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
}
}
return ret;
} //------------直线和直线(向量)-------------
//向量向左边平移t的距离
Line& moveLine( double t)
{
Point of;
of = Point( -( e.y - s.y), e.x - s.x);
double dis = sqrt( of.x * of.x + of.y * of.y);
of.x= of.x * t / dis, of.y = of.y * t / dis;
s = s + of, e = e + of;
return *this;
}
//直线重合
static bool equal(const Line &_st,const Line &_se)
{
return _st.has( _se.e) && _se.has( _st.s);
}
//直线平行
static bool parallel(const Line &_st,const Line &_se)
{
return sgn( _st / _se, ) == ;
}
//两直线(线段)交点
//返回-1代表平行,0代表重合,1代表相交
static bool crossLPt(const Line &_st,const Line &_se, Point &ret)
{
if(parallel(_st,_se))
{
if(Line::equal(_st,_se)) return ;
return -;
}
ret = _st.s;
double t = ( Line(_st.s,_se.s) / _se) / ( _st / _se);
ret.x += (_st.e.x - _st.s.x) * t;
ret.y += (_st.e.y - _st.s.y) * t;
return ;
}
//------------线段和直线(向量)----------
//直线和线段相交
//参数:直线[_st],线段[_se]
friend bool crossSL( Line &_st, Line &_se)
{
return sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.e), ) >= ;
} //判断线段是否相交(注意添加eps)
static bool isCrossSS( const Line &_st, const Line &_se)
{
//1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
//2.跨立试验(等于0时端点重合)
return
max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
sgn( xmult( _se.s, _st.s, _se.e) * xmult( _se.s, _se.e, _st.s), ) >= &&
sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.s), ) >= ;
}
}; //寻找凸包的graham 扫描法所需的排序函数
Point gsort;
bool gcmp( const Point &ta, const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
{
double tmp = xmult( gsort, ta, tb);
if( fabs( tmp) < eps)
return getdis( gsort, ta) < getdis( gsort, tb);
else if( tmp > )
return ;
return ;
} class Polygon
{
public:
const static int maxpn = 5e4+;
Point pt[maxpn];//点(顺时针或逆时针)
Line dq[maxpn]; //求半平面交打开注释
int n;//点的个数 //求多边形面积,多边形内点必须顺时针或逆时针
double area()
{
double ans = 0.0;
for(int i = ; i < n; i ++)
{
int nt = (i + ) % n;
ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
}
return fabs( ans / 2.0);
}
//求多边形重心,多边形内点必须顺时针或逆时针
Point gravity()
{
Point ans;
ans.x = ans.y = 0.0;
double area = 0.0;
for(int i = ; i < n; i ++)
{
int nt = (i + ) % n;
double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
area += tp;
ans.x += tp * (pt[i].x + pt[nt].x);
ans.y += tp * (pt[i].y + pt[nt].y);
}
ans.x /= * area;
ans.y /= * area;
return ans;
}
//判断点是否在任意多边形内[射线法],O(n)
bool ahas( Point &_Off)
{
int ret = ;
double infv = 1e20;//坐标系最大范围
Line l = Line( _Off, Point( -infv ,_Off.y));
for(int i = ; i < n; i ++)
{
Line ln = Line( pt[i], pt[(i + ) % n]);
if(fabs(ln.s.y - ln.e.y) > eps)
{
Point tp = (ln.s.y > ln.e.y)? ln.s: ln.e;
if( ( fabs( tp.y - _Off.y) < eps && tp.x < _Off.x + eps) || Line::isCrossSS( ln, l))
ret++;
}
else if( Line::isCrossSS( ln, l))
ret++;
}
return ret&;
} //判断任意点是否在凸包内,O(logn)
bool bhas( Point & p)
{
if( n < )
return false;
if( xmult( pt[], p, pt[]) > eps)
return false;
if( xmult( pt[], p, pt[n-]) < -eps)
return false;
int l = ,r = n-;
int line = -;
while( l <= r)
{
int mid = ( l + r) >> ;
if( xmult( pt[], p, pt[mid]) >= )
line = mid,r = mid - ;
else l = mid + ;
}
return xmult( pt[line-], p, pt[line]) <= eps;
} //凸多边形被直线分割
Polygon split( Line &_Off)
{
//注意确保多边形能被分割
Polygon ret;
Point spt[];
double tp = 0.0, np;
bool flag = true;
int i, pn = , spn = ;
for(i = ; i < n; i ++)
{
if(flag)
pt[pn ++] = pt[i];
else
ret.pt[ret.n ++] = pt[i];
np = xmult( _Off.s, _Off.e, pt[(i + ) % n]);
if(tp * np < -eps)
{
flag = !flag;
Line::crossLPt( _Off, Line(pt[i], pt[(i + ) % n]), spt[spn++]);
}
tp = (fabs(np) > eps)?np: tp;
}
ret.pt[ret.n ++] = spt[];
ret.pt[ret.n ++] = spt[];
n = pn;
return ret;
} /** 卷包裹法求点集凸包,_p为输入点集,_n为点的数量 **/
void ConvexClosure( Point _p[], int _n)
{
sort( _p, _p + _n);
n = ;
for(int i = ; i < _n; i++)
{
while( n > && sgn( xmult( pt[n-], pt[n-], _p[i]), ) <= )
n--;
pt[n++] = _p[i];
}
int _key = n;
for(int i = _n - ; i >= ; i--)
{
while( n > _key && sgn( xmult( pt[n-], pt[n-], _p[i]), ) <= )
n--;
pt[n++] = _p[i];
}
if(n>) n--;//除去重复的点,该点已是凸包凸包起点
}
/****** 寻找凸包的graham 扫描法********************/
/****** _p为输入的点集,_n为点的数量****************/ void graham( Point _p[], int _n)
{
int cur=;
for(int i = ; i < _n; i++)
if( sgn( _p[cur].y, _p[i].y) > || ( sgn( _p[cur].y, _p[i].y) == && sgn( _p[cur].x, _p[i].x) > ) )
cur = i;
swap( _p[cur], _p[]);
n = , gsort = pt[n++] = _p[];
if( _n <= ) return;
sort( _p + , _p+_n ,gcmp);
pt[n++] = _p[];
for(int i = ; i < _n; i++)
{
while(n> && sgn( xmult( pt[n-], pt[n-], _p[i]), ) <= )// 当凸包退化成直线时需特别注意n
n--;
pt[n++] = _p[i];
}
}
//凸包旋转卡壳(注意点必须顺时针或逆时针排列)
//返回值凸包直径的平方(最远两点距离的平方)
pair<Point,Point> rotating_calipers()
{
int i = % n;
double ret = 0.0;
pt[n] = pt[];
pair<Point,Point>ans=make_pair(pt[],pt[]);
for(int j = ; j < n; j ++)
{
while( fabs( xmult( pt[i+], pt[j], pt[j + ])) > fabs( xmult( pt[i], pt[j], pt[j + ])) + eps)
i = (i + ) % n;
//pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点
if(ret < getdis2(pt[i],pt[j])) ret = getdis2(pt[i],pt[j]), ans = make_pair(pt[i],pt[j]);
if(ret < getdis2(pt[i+],pt[j+])) ret = getdis(pt[i+],pt[j+]), ans = make_pair(pt[i+],pt[j+]);
}
return ans;
} //凸包旋转卡壳(注意点必须逆时针排列)
//返回值两凸包的最短距离
double rotating_calipers( Polygon &_Off)
{
int i = ;
double ret = 1e10;//inf
pt[n] = pt[];
_Off.pt[_Off.n] = _Off.pt[];
//注意凸包必须逆时针排列且pt[0]是左下角点的位置
while( _Off.pt[i + ].y > _Off.pt[i].y)
i = (i + ) % _Off.n;
for(int j = ; j < n; j ++)
{
double tp;
//逆时针时为 >,顺时针则相反
while((tp = xmult(_Off.pt[i + ],pt[j], pt[j + ]) - xmult(_Off.pt[i], pt[j], pt[j + ])) > eps)
i = (i + ) % _Off.n;
//(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段
ret = min(ret, Line(pt[j], pt[j + ]).dis(_Off.pt[i], true));
ret = min(ret, Line(_Off.pt[i], _Off.pt[i + ]).dis(pt[j + ], true));
if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断
{
ret = min(ret, Line(pt[j], pt[j + ]).dis(_Off.pt[i + ], true));
ret = min(ret, Line(_Off.pt[i], _Off.pt[i + ]).dis(pt[j], true));
}
}
return ret;
} //-----------半平面交-------------
//复杂度:O(nlog2(n))
//获取半平面交的多边形(多边形的核)
//参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
//函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)
int judege( Line &_lx, Line &_ly, Line &_lz)
{
Point tmp;
Line::crossLPt(_lx,_ly,tmp);
return sgn(xmult(_lz.s,tmp,_lz.e),);
}
int halfPanelCross(Line L[], int ln)
{
int i, tn, bot, top;
for(int i = ; i < ln; i++)
L[i].get_angle();
sort(L, L + ln);
//平面在向量左边的筛选
for(i = tn = ; i < ln; i ++)
if(fabs(L[i].angle - L[i - ].angle) > eps)
L[tn ++] = L[i];
ln = tn, n = , bot = , top = ;
dq[] = L[], dq[] = L[];
for(i = ; i < ln; i ++)
{
while(bot < top && judege(dq[top],dq[top-],L[i]) > )
top --;
while(bot < top && judege(dq[bot],dq[bot+],L[i]) > )
bot ++;
dq[++ top] = L[i];
}
while(bot < top && judege(dq[top],dq[top-],dq[bot]) > )
top --;
while(bot < top && judege(dq[bot],dq[bot+],dq[top]) > )
bot ++;
//若半平面交退化为点或线
// if(top <= bot + 1)
// return 0;
dq[++top] = dq[bot];
for(i = bot; i < top; i ++)
Line::crossLPt(dq[i],dq[i + ],pt[n++]);
return n;
}
}; Polygon pa,pb; int main(void)
{
while(~scanf("%d%d",&pa.n,&pb.n)&&(pa.n||pb.n))
{
for(int i=;i<pa.n;i++)
scanf("%lf%lf",&pa.pt[i].x,&pa.pt[i].y);
for(int i=;i<pb.n;i++)
scanf("%lf%lf",&pb.pt[i].x,&pb.pt[i].y);
printf("%.5f\n",pa.rotating_calipers(pb));
}
return ;
}
poj3608 Bridge Across Islands的更多相关文章
- 【旋转卡壳】poj3608 Bridge Across Islands
给你俩凸包,问你它们的最短距离. 咋做就不讲了,经典题,网上一片题解. 把凸包上的点逆时针排序.可以取它们的平均点,然后作极角排序. 旋转卡壳其实是个很模板化的东西…… 先初始化分别在凸包P和Q上取哪 ...
- 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)
题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...
- POJ 3608 Bridge Across Islands [旋转卡壳]
Bridge Across Islands Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10455 Accepted: ...
- POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)
Bridge Across Islands Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7202 Accepted: ...
- poj 3068 Bridge Across Islands
Bridge Across Islands Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11196 Accepted: ...
- 【poj3608】 Bridge Across Islands
http://poj.org/problem?id=3608 (题目链接) 题意 求两凸包间最短距离 Solution 难写难调,旋转卡壳,还真是卡死我了. 先分别选出两凸包最上点和最下点,从这两点开 ...
- POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)
Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...
- POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳
题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...
- poj 3608 Bridge Across Islands
题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...
随机推荐
- UART简介
经常遇到初学者,对单片机串行通讯出了问题不知道如何办的情况.其实最有效的调试方法是用示波器观察收发数据的波形.通过观察波形可以确定以下情况: 1.数据是否接收或发送: 2.数据是否正确: 3.波特率是 ...
- 使用C#语言实现一些功能
今天由于是周六,所以就没讲课啦,于是我就仔细看啦几道还没掌握的题,然后总结啦一下. 一.三级联动 像这个三级联动吧,感觉在做网站时间肯定会用到啦,但是那时间肯定不会是这样子做的啦,不可能把所有的省市区 ...
- 图解利用vmware工具进行虚拟机克隆
在vmware上创建一台完整的虚拟机,在该创建的虚拟机上进行克隆,先关闭创建的虚拟机,然后选中你要克隆的虚拟机,右击->管理->克隆,然后点击下一步,如下图所示: 2 然后点击下一步,如下 ...
- vs删除空行 —— 正则表达式以及其他
\r:return 到当前行的最左边. \n: newline 向下移动一行,并不移动左右. 1. ^\s*\n 查找空行 2. ^\s*(?=\r?$)\n 查找空行即 ...
- JS-制作留言提交系统(支持ctrl+回车)
弹出键值说明: //console.log(ev.keyCode)//回车:13//ctrl:17 <!DOCTYPE html> <html> <head> &l ...
- Java初学者笔记四:按行读写文件和输入处理
一.我们来看python的很简单: 1.读文件: with open("/path/file","r") as fr: for line in fr.readl ...
- 【BZOJ1529】[POI2005]ska Piggy banks Tarjan
[BZOJ1529][POI2005]ska Piggy banks Description Byteazar 有 N 个小猪存钱罐. 每个存钱罐只能用钥匙打开或者砸开. Byteazar 已经把每个 ...
- Spring项目对JDBC的支持和基本使用
欢迎查看Java开发之上帝之眼系列教程,如果您正在为Java后端庞大的体系所困扰,如果您正在为各种繁出不穷的技术和各种框架所迷茫,那么本系列文章将带您窥探Java庞大的体系.本系列教程希望您能站在上帝 ...
- CentOS7.4使用yum安装MySQL5.6
CentOS默认数据库为mariadb可以使用yum安装MySQL5.6 系统版本查看 下载yum源安装 wget http://dev.mysql.com/get/mysql-community-r ...
- 模反元素 RSA Euler's totient function
https://baike.baidu.com/item/模反元素/20417595 如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1.这时,b就 ...