由于直方图受组距(bin size)影响很大,设置不同的组距可能会产生完全不同的可视化结果。因此我们可以用密度平滑估计来更好地反映数据的真实特征。具体可参见这篇文章:https://blog.csdn.net/unixtch/article/details/78556499

还是用我们自己创建的一组符合正态分布的数据来画图。

准备工作:先导入matplotlib,seaborn和numpy,然后创建一个图像和一个坐标轴

import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
fig,ax=plt.subplots()

用seaborn画核密度图:  sns.kdeplot(x,shade=True)

让我们在用matplotlib画好的直方图的基础上画核密度图:

import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
fig,ax=plt.subplots() np.random.seed(4) #设置随机数种子
Gaussian=np.random.normal(0,1,1000) #创建一组平均数为0,标准差为1,总个数为1000的符合标准正态分布的数据
ax.hist(Gaussian,bins=25,histtype="stepfilled",normed=True,alpha=0.6)
sns.kdeplot(Gaussian,shade=True) plt.show()

图像如下:

注意:导入seaborn包后,绘图风格自动变为seaborn风格。

另外,可以用distplot命令把直方图和KDE一次性画出来。

用seaborn画直方图和核密度图:  sns.distplot(x)

代码如下:

import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns np.random.seed(4) #设置随机数种子
Gaussian=np.random.normal(0,1,1000) #创建一组平均数为0,标准差为1,总个数为1000的符合标准正态分布的数据
sns.distplot(Gaussian) plt.show()

图像和上面基本一致:

Matplotlib学习---用seaborn画直方图,核密度图(histogram, kdeplot)的更多相关文章

  1. Matplotlib学习---用seaborn画联合分布图(joint plot)

    有时我们不仅需要查看单个变量的分布,同时也需要查看变量之间的联系,这时就需要用到联合分布图. 这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图 ...

  2. Matplotlib学习---用seaborn画矩阵图(pair plot)

    矩阵图非常有用,人们经常用它来查看多个变量之间的联系. 下面用著名的鸢尾花数据来画一个矩阵图.从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画 ...

  3. matplotlib 柱状图、饼图;直方图、盒图

    #-*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl m ...

  4. Matplotlib学习---用wordcloud画词云(Word Cloud)

    画词云首先需要安装wordcloud(生成词云)和jieba(中文分词). 先来说说wordcloud的安装吧,真是一波三折.首先用pip install wordcloud出现错误,说需要安装Vis ...

  5. Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)

    mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...

  6. matplotlib学习日记(六)-箱线图

    (一)箱线图---由一个箱体和一对箱须组成,箱体是由第一个四分位数,中位数和第三四分位数组成,箱须末端之外的数值是离散群,主要应用在一系列测量和观测数据的比较场景 import matplotlib ...

  7. Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)

    直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...

  8. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  9. seaborn分布数据可视化:直方图|密度图|散点图

    系统自带的数据表格(存放在github上https://github.com/mwaskom/seaborn-data),使用时通过sns.load_dataset('表名称')即可,结果为一个Dat ...

随机推荐

  1. 【JS复习笔记】03 继承(从ES5到ES6)

    前言 很久以前学习<Javascript语言精粹>时,写过一个关于js的系列学习笔记. 最近又跟别人讲什么原型和继承什么的,发现这些记忆有些模糊了,然后回头看自己这篇文章,觉得几年前的学习 ...

  2. Docker镜像的修改和自定义

    一.docker镜像的更新 (1)启动镜像,写入一些文件或者更新软件 docker run -it 3afd47092a0e[root@44652ba46352 /]# ls (2)更新镜像 dock ...

  3. python2中reload(sys)后设置编码

    python在安装时,默认的编码是ascii,当程序中出现非ascii编码时,python的处理常常会报这样的错UnicodeDecodeError: 'ascii' codec can't deco ...

  4. c语言之字符串和格式化输入输出

    字符串和格式化输入输出 #include<stdio.h> #include<string.h> #define DENSITY 62.4 int main(void) { f ...

  5. [2017BUAA软工助教]个人项目测试结果

    个人项目测试结果 标签(空格分隔): 未分类 9.29第一次测试结果 注:点击表头内相应项目可针对该项目进行排序 -c测试结果 INDEX NumberID -c 1 -c 5 -c 100 -c 5 ...

  6. PAT L2-016 愿天下有情人都是失散多年的兄妹

    https://pintia.cn/problem-sets/994805046380707840/problems/994805061769609216 呵呵.大家都知道五服以内不得通婚,即两个人最 ...

  7. chrome extensions notifications

    developer.chrome.comhttps://developer.chrome.com/extensions/notifications notification | MDNhttps:// ...

  8. Windows Docker 安装

    win7.win8 .win10等需要利用 docker toolbox 来安装,国内可以使用阿里云的镜像来下载,下载地址:http://mirrors.aliyun.com/docker-toolb ...

  9. JQuery/JS select标签动态设置选中值、设置禁止选择 button按钮禁止点击 select获取选中值

    //**1.设置选中值:(根据索引确定选中值)**// var osel=document.getElementById("selID"); //得到select的ID var o ...

  10. 使用Random类生成指定范围的随机数

    目的:要生成在[min,max]之间的随机整数 public class RandomTest { public static void main(String[] args) { ; ; Rando ...