题目描述

刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal
的or)操作。选择数字i的概率是p[i]。保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1。
题解
MIN-MAX容斥

大概就是这么两个东西,做题思路大概就是正难则反吧,max不好求但min好求,就可以直接用这种方法上了。

现在我们算maxV(S),然鹅它不好算,所以我们就转换求所有minV(S)。

考虑一个事件发生的概率为p,那么我们就有了求min的方法。

sum=1*p+2*(p-1)*p+3*(p-1)^2*p......

然后用高中数学知识,解得它等于1/p。

然后我们的任务变成了求所有子集的p。

这玩意也不太好求,因为所有与这个集合有交的数都会产生贡献。

再次正难则反一下,变成了1-补集,这个补集和很好,它就是补集的高维前缀和。

有人说这是FMT,但好像FWT的异或卷积也长这样?

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#define N (1<<20)+20
using namespace std;
const double eps=1e-;
int n,size,cnt[N];
double ans,a[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(f=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
int main(){
n=rd();size=(<<n);int up=size;
for(int i=;i<size;++i)scanf("%lf",&a[i]);
for(int i=;i<size;i<<=)
for(int j=;j<size;++j)if(!(j&i))a[j|i]+=a[j];
for(int i=;i<=size;++i)cnt[i]=cnt[i>>]+(i&);
for(int i=;i<size;++i){
double x=-a[(size-)^i];
if(fabs(x)<eps){printf("INF\n");return ;}
if(cnt[i]&)ans+=(double)/x;else ans-=(double)/x;
}
printf("%.10lf",ans);
return ;
}

我看到网上还有这么一种解法

然而我并没有看懂。。。

[HAOI2015]按位或(容斥+前缀和)的更多相关文章

  1. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

  2. Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望

    传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...

  3. luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和

    考虑min-max容斥 \(E[max(S)] = \sum \limits_{T \subset S} min(T)\) \(min(T)\)是可以被表示出来 即所有与\(T\)有交集的数的概率的和 ...

  4. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  5. BZOJ4036:按位或 (min_max容斥&高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  6. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  7. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  8. bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...

  9. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

随机推荐

  1. React-Native之轮播组件looped-carousel的介绍与使用

    React-Native之轮播组件looped-carousel的介绍与使用 一,关于react-native轮播组件的介绍与对比 1,react-native-swiper在动态使用网页图片,多张图 ...

  2. C#设计模式之2:单例模式

    在程序的设计过程中很多时候系统会要求对于某个类型在一个应用程序域中只出现一次,或者是因为性能的考虑,或者是由于逻辑的要求,总之是有这样的需求的存在,那在设计模式中正好有这么一种模式可以来满足这样的要求 ...

  3. Linux 下面 PG 的 uuid-ossp 包安装办法

    1. pgsql 安装 时报错, 如图示: 详细信息为: 执行SQL为: CREATE EXTENSION IF NOT EXISTS "uuid-ossp" 错误纤细信息为: C ...

  4. 谈谈git/github

    先说git/github操作 ->关于git/github操作的好文章已经非常多,如: github使用指南 廖雪峰的git教程 本文的目的在于,积累自己平时相关的操作和想法,记录下来,形成自己 ...

  5. 《笔记》Python itertools的groupby分组数据处理

    今天遇到这么一个需求,需要将这样的数据进行分组处理: [(, ), (, ), (, ), (, ), (, ), (, )] 处理之后我可能需要得到这样的结果: [(, (, , (, , (, ) ...

  6. 关于Select2下拉框组件

    文档如下: https://select2.org/configuration/options-api

  7. $.ajax的async设置true和false的区别一点笔记

    async的默认值是true 当async为true时,为异步请求 如果一个$.ajax的函数在另一个函数中调用,不一定会等该函数调用完再加载完函数 导致产生空值的问题 而在JS函数中调用$.ajax ...

  8. C#使用WebClient下载文件到本地目录

    C#使用WebClient下载文件到本地目录. 1.配置本地目录路径 <appSettings> <!--文件下载目录--> <add key="Downloa ...

  9. mysql分页查询按某类型置顶 按某类型置尾 再按优先级排序

    近段时间接到一个新需求: 第一优先级:未满的标的顺位高于已满标的顺位.第二优先级:新手标的顺位高于其他标的的顺位. 第三优先级:标的剩余可投金额少的顺位高于标的剩余可投金额多的. 我是直接通过sql语 ...

  10. 学习 Spring (九) 注解之 @Required, @Autowired, @Qualifier

    Spring入门篇 学习笔记 @Required @Required 注解适用于 bean 属性的 setter 方法 这个注解仅仅表示,受影响的 bean 属性必须在配置时被填充,通过在 bean ...