题目链接http://poj.org/problem?id=1733

题目大意:有一个很长很长含有01的字符串,长度可达1000000000,首先告诉你字符串的长度n,再给一个m,表示给你m条信息,接下来的m行每行包含x,y,even/odd,表示区间【x,y】中1的个数,even为偶数,odd为奇数。判断前几条是对的,也就是说假设k+1条信息与前面相互矛盾,就输出k,说明前k条正确。

例:
Sample Input

10
5
1 2 even
3 4 odd
5 6 even
1 6 even
7 10 odd

Sample Output

3

解题思路:wa了n多次,但是思路正确了,字符串长度太大,开不了那么大的数组,看了题解才知道还可以离散化。

如果不会离散化,就看下这个博客:https://blog.csdn.net/xiangaccepted/article/details/73276826

不过我没有用那里的方法离散化,直接看大佬的,用map离散化挺方便的,因为这些数本身大小不重要,而重要的是他们的相对关系,所以可以进行离散化处理。

做法就是运用带权并查集,区间【x,y】中1的个数为偶数时,说明前x-1个数和前y个数中1的个数奇偶性相同,反之区间【x,y】1的个数为奇数,说明前x-1个数和前y个数中1的个数奇偶性不同。我们就可以用一个关系数组relation【】存储该节点与其父亲节点的奇偶性是否一致(0相同,1不相同)。

然后问题就在于更新它们的关系域了

第一个是查找的时候,还要进行路径压缩,所以节点的关系域要更新。

假设做图是路径压缩前,右图是路径压缩后,我们把可以简单的对他们的关系进行枚举,就可以找到他们的关系了

relation【x】  relation【fx】  更新后relation【x】

0  0  0

0  1  1

1  0  1

1  1  0

很明显就是异或的关系,所以可以得到relation[x]=(relation[x]+relation[par[x]])%2,也就是relation[x]=relation[x]^relation[par[x]].

还有就是当两个元素的根不一样时需要合并两个集合,假如是将x所在集合的根rootx合并到y所在的集合的根rooty,这时候rootx的关系域也要进行更新,因为原本它的父亲节点是它自己,后来变成了rooty。

从左图变成右图,再作了一条辅助线,x->y便于理解下,我们要求的更新后relation【rootx】与它的父亲节点rooty的关系

看到这图我们是不是可以想想可不可以用向量去做呢?事实证明是可以的

根据向量的知识我们可以知道:rootx->rooy=x->y+y->rooty-x->rootx

这不就等价于我们的:relation[rootx]=x与y的关系d+relation[y]-relation[x]

为了保证不超出我们的关系的范围(【0,1】)所以我们的式子为relation[fx]=(d+relation[y]-relation[x]+2)%2(加2保证结果不为负数)

还有最后一个就是当x和y的根节点已经相同时,我们怎么判断是否与前面的信息有矛盾呢?

其实就是我们查找时更新关系域是一样的。

relation【x】  relation【y】  d(x与y的关系)

0  0  0

0  1  1

1  0  1

1  1  0

直接判断relation[x]^relation[y]==d

如果不等于肯定是有矛盾的。

思路基本就这样,其他也没什么了,看代码吧。

这应该是我写的最详细的一篇解题报告了。。。

附上代码:

 #include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
int par[*],relation[*];
int ans,q; void init(int x)
{
for(int i=;i<=x;i++)
{
par[i]=i;
relation[i]=;
}
} int find(int x)
{
if(x!=par[x])
{
int temp=find(par[x]);
relation[x]=(relation[x]+relation[par[x]])%; //更新relation[x]
par[x]=temp;
}
return par[x];
} void unite(int x,int y,int d,int cnt) //d是x和y的关系,cnt是第几条消息
{
int fx=find(x);
int fy=find(y);
if(fx==fy)
{
if(relation[x]^relation[y]!=d&&q==)
{
ans=cnt-; //第cnt条消息矛盾,说明前cnt-1条消息对的
q++;
}
return;
}
else
{
par[fx]=fy;
relation[fx]=(d+relation[y]-relation[x]+)%;
}
} bool same(int x,int y)
{
return find(x)==find(y);
} signed main()
{
int n,m;
map<int,int> mp; //用于离散化
while(cin>>n>>m)
{
mp.clear();
init(*);
ans=m;
int count=;
int k=,q=;
while(m--)
{
int a,b,d;
char s[];
cin>>a>>b>>s;
if(!mp[a-])
mp[a-]=count++;
if(!mp[b])
mp[b]=count++;
if(s[]=='e') d=; //偶数,x-1和y奇偶性相同
else d=;
unite(mp[a-],mp[b],d,k); //k是记录第几条消息
k++;
}
cout<<ans<<endl;
}
return ;
}

poj 1733 Parity game(带权并查集+离散化)的更多相关文章

  1. POJ 1733 Parity game (带权并查集)

    题意:有序列A[1..N],其元素值为0或1.有M条信息,每条信息表示区间[L,R]中1的个数为偶数或奇数个,但是可能有错误的信息.求最多满足前多少条信息. 分析:区间统计的带权并查集,只是本题中路径 ...

  2. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  3. URAL - 1003:Parity (带权并查集&2-sat)

    Now and then you play the following game with your friend. Your friend writes down a sequence consis ...

  4. POJ 1182 食物链 【带权并查集】

    <题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...

  5. POJ 1182 食物链 (带权并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78551   Accepted: 23406 Description ...

  6. POJ 1182 食物链 【带权并查集/补集法】

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

  7. poj 1182 食物链【带权并查集】

    设相等的边权为0,吃的边权为,被吃的边权为2,然后用带权并查集在%3的意义下做加法即可 关系为简单环的基本都可以用模环长的方式是用带权并查集 #include<iostream> #inc ...

  8. A Bug's Life POJ - 2492 (种类或带权并查集)

    这个题目的写法有很多,用二分图染色也可以写,思路很好想,这里我们用关于并查集的两种写法来做. 题目大意:输入x,y表示x和y交配,然后判断是否有同性恋. 1 带权并查集: 我们可以用边的权值来表示一种 ...

  9. poj1733(带权并查集+离散化)

    题目链接:http://poj.org/problem?id=1733 题意:给定由0.1组成的数串长度n,询问次数m,每次询问给出a,b,s,表示区间[a,b]内1的数量为s(odd-奇数或even ...

随机推荐

  1. React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton)

    React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton) 一,需求与简单介绍 在开发项目时发现RN没有给提供RadioButton和Rad ...

  2. asp.net core认证和授权的初始认识--claim、claimsidentity、claimsprincipal

    Claim表示一个声明单元,它用来组成ClaimsIdentity.ClaimsIdentity表示一个证件,例如身份证,身份证上面的名字表示一个Claim,身份证号也表示一个Claim,所有这些Cl ...

  3. java的数据类型:基本数据类型和引用数据类型

    Java数据类型的基本概念 数据类型在计算机语言里面,是对内存位置的一个抽象表达方式,可以理解为针对内存的一种抽象的表达方式. 开始接触每种语言的时候,都会存在对数据类型的认识,有复杂的,有复杂的,各 ...

  4. array_column函数

    <?php $arr = [ [ 'id'=>1, 'name'=>'wang', 'age'=>10 ], [ 'id'=>2, 'name'=>'yong', ...

  5. MySQL unknown variable 'default-character-set=utf8'的解决

    Windows07 安装了MySQL-server-5.5,直接在命令行输入net start mysql ,启动mysql成功, 然后修改/MySQL Server 5.5/my.ini,增加了de ...

  6. HashMap深度解析(转载)

    原文地址:http://blog.csdn.net/ghsau/article/details/16890151 实现原理:用一个数组来存储元素,但是这个数组存储的不是基本数据类型.HashMap实现 ...

  7. ORA-12541:TNS:无监听程序 解决办法

    昨天我在一台win7笔记本中安装了oracle11g,然后打算用另一个win10的笔记本使用plsql developer局域网内连接访问oracle数据库.但是遇到ORA-12541:TNS:无监听 ...

  8. 为WebRTC 应用部署Turn Server

    部署WebRTC 或 SIP p2p 方案时经常会遇到p2p 无法穿透的环境, 这时就是TunServer 的用武之地了. 这里我们使用turnserver-0.7.3 下载confuse依赖库 wg ...

  9. THEPYTHONCHALLENG闯关记录

    由于是自己看视频学python,总觉得不写几行代码就什么都没有学到. 找了一个写代码的网站其实只是因为这个看起来好玩. 闯关地址http://www.pythonchallenge.com/index ...

  10. DRF 版本 认证

    DRF的版本 版本控制是做什么用的, 我们为什么要用 首先我们要知道我们的版本是干嘛用的呢大家都知道我们开发项目是有多个版本的 当我们项目越来越更新~版本就越来越多我们不可能新的版本出了~以前旧的版本 ...