传送门

mdzz,为什么这题有个贪心的标签啊qwq

首先考虑每一种车间,对于每相邻两个车间,在中点左边那么左边那个会贡献答案,在右边就右边那个更优

所以总共会有m-1个这样的分界中点,然后最多有m+1个(头尾也算)区间,满足在区间内选点其他的贡献答案的车间是固定的

假设贡献答案的车间是固定的,考虑拆答案柿子\(\sum_{i=1}^{n}(x-x_i)^2=nx^2-2x\sum x_i+\sum {x_i}^2\),就是二次函数求区间最小值

然后从左往右扫,维护\(\sum x_i\)和\(sum {x_i}^2\)救星了

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register using namespace std;
const int N=2e5+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL a[N];
int b[N],bk[N];
struct node
{
int i,j;
bool operator < (const node &bb) const {return a[i]+a[j]<a[bb.i]+a[bb.j];}
}qq[N];
int n,m,q;
db ma=1e20,ans,na,nb,nc;
il void gmin(db a,db b,db c,db l,db r)
{
if(a*l*l+b*l+c<ma) ma=a*l*l+b*l+c,ans=l;
db x=-b/a/2;
if(x>=l&&x<=r&&a*x*x+b*x+c<ma) ma=a*x*x+b*x+c,ans=x;
} int main()
{
n=rd(),m=rd();
for(int i=1;i<=m;++i)
{
a[i]=rd(),b[i]=rd();
if(bk[b[i]]) qq[++q]=(node){bk[b[i]],i};
else nb-=2*a[i],nc+=(db)a[i]*a[i];
bk[b[i]]=i;
}
sort(qq+1,qq+q+1);
a[0]=-1e9,a[m+1]=1e18,a[m+2]=a[m+1]+1;
qq[++q]=(node){m+1,m+1},qq[q+1]=(node){m+2,m+2};
na=n;
for(int i=1,j=1;i<=q;i=j)
{
db l=(db)(a[qq[i-1].i]+a[qq[i-1].j])/2,r=(db)(a[qq[j].i]+a[qq[j].j])/2;
while(!(qq[i]<qq[j]))
{
gmin(na,nb,nc,l,r);
nb+=2*a[qq[j].i],nc-=(db)a[qq[j].i]*a[qq[j].i];
nb-=2*a[qq[j].j],nc+=(db)a[qq[j].j]*a[qq[j].j];
++j;
}
}
printf("%.4lf\n",ans);
return 0;
}

luogu P3162 [CQOI2012]组装的更多相关文章

  1. P3162 [CQOI2012]组装

    传送门 退火大法好 我并不会正解于是只好打退火了--其他没啥好讲--只要对每一种颜色开一个vector,存一下所有这个颜色的位置,判定的时候可以去所有的颜色里二分找到前缀和后缀,把和当前点距离小的加入 ...

  2. [CQOI2012]组装 (贪心)

    CQOI2012]组装 solution: 蒟蒻表示并不会模拟退火,所以用了差分数组加贪心吗.我们先来看题: 在数轴上的某个位置修建一个组装车间 到组装车间距离的平方的最小值. 1<=n< ...

  3. [CQOI2012]组装 贪心

    [CQOI2012]组装 贪心好题. LG传送门 首先有一个必须要能推的式子:设第\(i\)种零件选的生产车间位置为\(x _ i\),组装车间位置为\(x\), 则总的花费为 \[f(x) = \s ...

  4. 【BZOJ2666】[cqoi2012]组装 贪心

    [BZOJ2666][cqoi2012]组装 Description 数轴上有m个生产车间可以生产零件.一共有n种零件,编号为1~n.第i个车间的坐标为xi,生产第pi种零件(1<=pi< ...

  5. BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)

    题目链接 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669 (luogu) https://www.luogu.org/prob ...

  6. BZOJ 2666: [cqoi2012]组装

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2666 题意:n种零件,m个位置,每个位置有一种零件.求一个位置x,使得cost(1 ...

  7. Luogu3162 CQOI2012 组装 贪心

    传送门 如果提供每一种零件的生产车间固定了,那么总时间\(t\)与组装车间的位置\(x\)的关系就是 \(t = \sum (x-a_i)^2 = nx^2-2\sum a_ix + \sum a_i ...

  8. LUOGU P3161 [CQOI2012]模拟工厂 (贪心)

    传送门 解题思路 贪心,首先因为\(n\)比较小,可以\(2^n\)枚举子集.然后判断的时候就每次看后面的如果用最大生产力生产能不能达成目标,解一个二次函数. 代码 #include<iostr ...

  9. 【题解】P3162CQOI2012组装

    [题解][CQOI2012]组装 考虑化为代数的形式,序列\(\left[a_i \right]\)表示选取的\(i\)种类仓库的坐标. \(ans=\Sigma(a_i-x)^2,(*)\),展开: ...

随机推荐

  1. A1065. A+B and C (64bit)

    Given three integers A, B and C in [-263, 263], you are supposed to tell whether A+B > C. Input S ...

  2. vcftools报错:Writing PLINK PED and MAP files ... Error: Could not open temporary file.解决方案

    一般来说有两种解决方案. 第一种:添加“--plink-tped”参数: 用vcftools的“--plink”参数生成plink格式文件时,小样本量测试可以正常生成plink格式,用大样本量时产生W ...

  3. 计算基因上外显子碱基覆盖度(exon coverage depth):Samtool工具使用

    假设想要计算ATP1A4基因上的外显子碱基覆盖度 首先查询这个基因所有exon的起始和终止位置,查询链接:http://grch37.ensembl.org/Homo_sapiens/Transcri ...

  4. SCU-4527 NightMare2(Dijkstra+BFS) !!!错误题解!!!

    错解警告!!! 描述 可怜的RunningPhoton又做噩梦了..但是这次跟上次不大一样,虽然他又被困在迷宫里,又被装上了一个定时炸弹,但是值得高兴的是,他发现他身边有数不清的财宝,所以他如果能带着 ...

  5. (BFS 二叉树) leetcode 515. Find Largest Value in Each Tree Row

    You need to find the largest value in each row of a binary tree. Example: Input: 1 / \ 3 2 / \ \ 5 3 ...

  6. day13-(事务&mvc&反射补充)

    回顾: jsp: java服务器页面 jsp的脚本 jsp的注释 html注释 java注释 jsp注释 <%-- --%> jsp的指令 page:声明页面一些属性 重要的属性: imp ...

  7. linux服务器,发现大量TIME_WAIT

    linux服务器,发现大量TIME_WAIT 今天登陆linux服务器,发现大量TIME_WAIT参考资料:http://coolnull.com/3605.html 酷喃|coolnull| » 大 ...

  8. python js(JavaScript)初识

    ####################总结############## 引入: 可以在body标签中放入<script type=”text/javascript”></scrip ...

  9. ruby 中 手动执行job任务

    step1:通过crtk客户端 进入项目主目录 step2:rails c step3:job类名.new.方法名 例:MonthWorkPlanJob.new.perform

  10. 转: Linux 系统调用sysconf 获取系统配置信息

    1.前言 linux提供了sysconf系统调用可以获取系统的cpu个数和可用的cpu个数. 2.sysconf  函数 man一下sysconf,解释这个函数用来获取系统执行的配置信息.例如页大小. ...