论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)

源文网址:https://arxiv.org/abs/1707.03718
tensorflow代码:https://github.com/luofan18/linknet-tensorflow
基于Linknet的分割实验:https://github.com/fourmi1995/IronSegExperiment-LinkNet
摘要
像素级分割不仅准确率上有要求,同时需要应用的实际中实时的应用中。虽然精度上较高,但参数与操作上的数量都是十分巨大的。本文提出的网络结构参数并未增加。只使用了11.5million的参数量,与21.2GFLOPs用于处理3x360x480的图片。该网络在CAMVID上取得state-of-the-art的效果,同时,在Cityscapes上取得较好的结果。该文同时以不同图像分辨率在NVIDIA GPU上的处理时间进行比较。
介绍
由于像增强现实,自动驾驶等大量任务应用于像素级的分类分割任务上,因此像素级分割成为一个较热的研究点。受自编码器的启发,目前现存的分割网络以encoder-decoder作为主要网络结构。编码层将输入的信息编码到特征信息上,解码器将特征信息映射到空间分类中以进行分割。目标检测上中Fast RCNN,YOLO,SSD致力于实时的目标检测,但分割任务上实时性的相关工作仍未有所进展。
该文的贡献是在不影响处理时间的条件下得到较高分割准确率。一般,编码层由于卷积池化丢失的位置信息通过池化层最大值的索引或者全卷积操作进行恢复。
该文主要贡献是并未使用上述方法进行恢复,绕过空间信息,直接将编码器与解码器连接来提高准确率,一定程度上减少了处理时间。通过这种方式,保留编码部分中不同层丢失的信息,同时,在进行重新学习丢失的信息时并未增加额外的参数与操作。
相关工作
分割任务需要对每个像素进行标记,因此,空间信息的保留就比较重要,用于场景分析的分割网络一般可以分为编码-解码部分,分别用于分类与生成。state-of-the-art的分割网络大多使用ImageNet上的分类模型作为encoder部分。解码部分使用最大池化操作保留的索引或者学习反卷积的参数等。编码部分与解码部分可以是对称的,也可以是非对称的。大多数分割网络在嵌入式上都无法进行实时的分割。使用RNN来获得语义信息,但RNN的计算量较大。
网络结构


结果
比较方向:(1)网络执行前行过程的操作数。(2)Cityscapes与CamVid数据集上的准确率。
操作:类别不平衡处理
,基于Pytorch框架,RMSProp优化方法。






参考
[1] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” The handbook of brain theory and neural networks, pp. 255–258, 1998.
[2] Y. LeCun, L. Bottou, G. B. Orr, and K. R. M¨uller, Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, ch. Efficient BackProp, pp. 9–50.
[3] M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised learning of invariant feature hierarchies with applications to object recognition,” in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, 2007, pp. 1–8.
论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)的更多相关文章
- 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...
- 论文阅读笔记二十六:Fast R-CNN (ICCV2015)
论文源址:https://arxiv.org/abs/1504.08083 参考博客:https://blog.csdn.net/shenxiaolu1984/article/details/5103 ...
- 论文阅读笔记二十二:End-to-End Instance Segmentation with Recurrent Attention(CVPR2017)
论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘 ...
- 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...
- 论文阅读笔记二十九:SSD: Single Shot MultiBox Detector(ECCV2016)
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD ...
- 论文阅读笔记二十八:You Only Look Once: Unified,Real-Time Object Detection(YOLO v1 CVPR2015)
论文源址:https://arxiv.org/abs/1506.02640 tensorflow代码:https://github.com/nilboy/tensorflow-yolo 摘要 该文提出 ...
- 论文阅读笔记六十五:Enhanced Deep Residual Networks for Single Image Super-Resolution(CVPR2017)
论文原址:https://arxiv.org/abs/1707.02921 代码: https://github.com/LimBee/NTIRE2017 摘要 以DNN进行超分辨的研究比较流行,其中 ...
- 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...
- 论文阅读笔记(十二)【CVPR2018】:Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成 ...
随机推荐
- Android Studio buildGrade文件注解
apply plugin: 'com.android.application' //指定用的那个插件,android App插件打包得到.apk文件 //com ...
- 启动项目时,mapper.xml文件没有导入
原因分析:绑定的statement没有发现,原因是只有mapper接口的java文件,没有xml文件 解决方法:需要在pom文件中进行配置 <!-- 如果不添加此节点mybatis的mapper ...
- windows下flazr对rtmp视频流进行压力测试(批量直播测试)
flazr-0.7-RC2下载地址:百度网盘 提取码:nu05 简述:通过推流软件推送摄像头视频流到nginx流媒体服务器,获取nginx流媒体服务器上的视频流,在windows下使用flazr软件进 ...
- Web方面的错误, 异常来自hresult:0x80070057(E_INVALIDARG)
删除 C:/WINDOWS/Microsoft.NET/Framework/v4.0.30319/Temporary ASP.NET files 这个文件夹. 解决方法: 1.代码保存频繁一点.做一个 ...
- TensorFlow学习笔记:保存和读取模型
TensorFlow 更新频率实在太快,从 1.0 版本正式发布后,很多 API 接口就发生了改变.今天用 TF 训练了一个 CNN 模型,结果在保存模型的时候居然遇到各种问题.Google 搜出来的 ...
- SqlServer三种常用窗口函数
插入数据 ,),(,),(,),(,),(,),(,),(,) ⒈rank()over,跳跃排序,允许并列,并在发生并列时保留名次空缺. select rank() over(order by sco ...
- Yara VS2017出现LINK : fatal error LNK1104: 无法打开文件“msvcrt.lib”
解决方法1 搜索msvcrt.lib所在的路径 C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MS ...
- requests库入门09-OAUTH认证
实际登陆中,认证用到的token会变的,不过可以在GIthub设置一个私人token. 如图,登录GIthub,然后用户下面选择Settings/Developer settings/Personal ...
- Python3学习笔记02-基础语法
默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串 ' # -*- coding:cp-1252 -*-' 也可以指定其他编码,以上用cp-1252字符 ...
- (常用)xml-pickle-shevel-json模块
json,pickle模块 1. 什么是序列化 序列化指的是将内存中的数据类型转换成一种中间格式,该格式可以用来存到硬盘中或者基于网络传输 2. 为 ...