codevs 2606 约数和问题 (数学+分块)
Smart最近沉迷于对约数的研究中。
对于一个数X,函数f(X)表示X所有约数的和。例如:f(6)=1+2+3+6=12。对于一个X,Smart可以很快的算出f(X)。现在的问题是,给定两个正整数X,Y(X<Y),Smart希望尽快地算出f(X)+f(X+1)+……+f(Y)的值,你能帮助Smart算出这个值吗?
输入文件仅一行,两个正整数X和Y(X<Y),表示需要计算f(X)+f(X+1)+……+f(Y)。
输出只有一行,为f(X)+f(X+1)+……+f(Y)的值。
2 4
14
对于20%的数据有1≤X<Y≤10^5。
对于60%的数据有1≤X<Y≤1*10^7。
对于100%的数据有1≤X<Y≤2*10^9。
思路:
这道题代码很简单,主要难点是推公式,我们先可以先推出: ans = ∑⌊n/i⌋*i (1<=i<=n,向下取整),解释下这个公式,我们是取1-n的约数和,那么 n/i向下取整也就是1-n中所有可以整除i的数的个数,然后再乘上i就是i这个约数对答案的贡献,i从1-n跑一边便可以算出答案,但是这样会超时的,那么我们需要优化下这个公式,因为是向下去整的那么肯定会有一些连续的数除i后向下取整得到的值一样,我们可以求出这些值的左右边界,将其归为一块,因为⌊n/i⌋(1<=i<=n,)的值一定递增的等差数列,那么我们求出每一个块的左右边界,直接套用等差数列的求和公式,(a1+an)*n/2, 带入l,r就是: (l+r)*(r-l+1)/2,这样就求的了个数之后再乘上权值就好了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long ll solve(ll x){
if(x == ||x == ) return x;
ll l = ,r = ,ans = ; //左右边界
while(l <= x){
r = x/(x/l);
ans += (x/l)*(l+r)*(r-l+)/;
l = r+;
}
return ans;
} int main()
{
ll x,y;
scanf("%lld%lld",&x,&y);
cout<<solve(y) - solve(x-)<<endl;
}
实现代码:
codevs 2606 约数和问题 (数学+分块)的更多相关文章
- codevs 2606 约数和(分块优化数学公式 )
题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...
- 洛谷P2424/codevs 2606 约数和
http://codevs.cn/problem/2606/ https://luogu.lohu.info/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. ...
- codevs 2606 约数和问题
题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...
- P2424 约数和 【整除分块】
一.题目 P2424 约数和 二.分析 因为都是加法,那么肯定有的一个性质,即前缀和的思想,就是$$ { ans =\sum_{i=1}^y f(i)} - {\sum_{i=1}^x f(i)} ...
- bzoj 1257: [CQOI2007]余数之和 (数学+分块)
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...
- BZOJ 1968 [Ahoi2005]COMMON 约数研究:数学【思维题】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 题意: 设f(x) = x约数的个数.如:12的约数有1,2,3,4,6,12,所以 ...
- [BZOJ1257][CQOI2007]余数之和sum 数学+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans ...
- codevs 1082 线段树练习 3 --分块练习
时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[ ...
- Codevs 4927 线段树练习5(分块)
4927 线段树练习5 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有n个数和5种操作 add a b c:把区间[a,b]内的 ...
随机推荐
- H5 15-交集选择器
15-交集选择器 我是段落 我是段落 我是段落 我是段落 我是段落 <!DOCTYPE html> <html lang="en"> <head> ...
- 1060D Social Circles(贪心)
题意:有n个客人,第i个客人希望左边至少Li个空椅子,右边至少Ri个空椅子,每个客人都属于一个圈,问你最少需要准备的椅子数量 贪心做,每个人都可以去和另一个人牵手,组成一个新的人,那么我们让大的和大的 ...
- TCP粘包问题解析与解决
一.粘包分析 作者本人在写一个FTP项目时,在文件的上传下载模块遇到了粘包问题.在网上找了一些解决办法,感觉对我情况都不好用,因此自己想了个比较好的解决办法,提供参考 1.1 粘包现象 在客户端与服务 ...
- Linux 典型应用之WebServer 安装和配置
Apache的基本操作 安装 yum install httpd 启动 service httpd start 在浏览器中输入以下Ip 发现无法访问 http://192.168.1.109/ 输入 ...
- Handling duplicate form submission in Spring MVC
javaweb开发之防止表单重复提交 - u012843873的博客 - CSDN博客 https://blog.csdn.net/u012843873/article/details/5526212 ...
- .net WCF WF4.5
花了两天时间学习使用WF,把一些遇到的问题记录下来,使用的环境是VS2017,网上的资料普遍太老了 需要注意,如果使用多项目同时启动的方式需要把WCF调整到WF启动顺序之上 1.怎么使用代码活动 新建 ...
- gulp项目和webpack项目在浏览器中查看的方式
在存在.git的目录下,按住shift+左键,打开命令行或者使用git Bash Gulp: 输入gulp dev 本地起一个服务器,在项目中找到gulp.js,然后找本地服务器,找到host和por ...
- PHP单元测试PHPUnit
配置说明 1.全局安装phpunit命令脚本 1 2 3 4 5 $ wget https://phar.phpunit.de/phpunit-7.0.phar $ chmod +x phpunit- ...
- MyEclipse 配置 Tomcat
安装好Tomcat,MyEclipse 之后,利用这两个工具可以开发部署Web 应用,步骤相对手动部署要简洁的多,这里有一个特别要注意的地方:系统里安装JDK.Tomcat.MyEclipse 的版本 ...
- git客户端下载 和安装
网址 https://git-scm.com/download/win 点击next 说明: (1)图标组件(Addition icons) : 选择是否创建桌面快捷方式. (2)桌面浏览(Wind ...