参考:

http://www.cnblogs.com/maybe2030/p/9231231.html

https://blog.csdn.net/wsj998689aa/article/details/39547771

https://charlesliuyx.github.io/2017/10/03/%E3%80%90%E7%9B%B4%E8%A7%82%E8%AF%A6%E8%A7%A3%E3%80%91%E4%BB%80%E4%B9%88%E6%98%AF%E6%AD%A3%E5%88%99%E5%8C%96/

1、正则化是什么

正则化看起来有些抽象,其直译"规则化",本质其实很简单,就是给模型加一些规则限制,约束要优化参数,目的是防止过拟合。其中最常见的规则限制就是添加先验约束,其中L1相当于添加Laplace先验,L相当于添加Gaussian先验。

2、L1正则和L2正则

L1正则是在原始的loss函数上加上一个L1正则化项,这个L1正则项实际就是在loss函数上添加一个结构化风险项,因此正则化其实和“带约束的目标函数”是等价的。而L1正则项就是一个1范数,本质相当于添加一个Laplace先验知识。同理,L2正则化项是一个2范数,本质却相当于添加一个Gaussian先验知识。

参考http://www.cnblogs.com/heguanyou/p/7582578.html。

3、范数

参考:https://charlesliuyx.github.io/2017/10/03/%E3%80%90%E7%9B%B4%E8%A7%82%E8%AF%A6%E8%A7%A3%E3%80%91%E4%BB%80%E4%B9%88%E6%98%AF%E6%AD%A3%E5%88%99%E5%8C%96/

我们知道,范数(norm)的概念来源于泛函分析与测度理论,wiki中的定义相当简单明了:范数是具有“长度”概念的函数,用于衡量一个矢量的大小(测量矢量的测度)

我们常说测度测度,测量长度,也就是为了表征这个长度。而如何表达“长度”这个概念也是不同的,也就对应了不同的范数,本质上说,还是观察问题的方式和角度不同,比如那个经典问题,为什么矩形的面积是长乘以宽?这背后的关键是欧式空间的平移不变性,换句话说,就是面积和长成正比,所以才有这个

没有测度论就没有(现代)概率论。而概率论也是整个机器学习学科的基石之一。测度就像尺子,由于测量对象不同,我们需要直尺量布匹、皮尺量身披、卷尺量房间、游标卡尺量工件等等。注意,“尺子”与刻度(寸、米等)是两回事,不能混淆。

范数分为向量范数(二维坐标系)和矩阵范数(多维空间,一般化表达),如果不希望太数学化的解释,那么可以直观的理解为:0-范数:向量中非零元素的数量;1-范数:向量的元素的绝对值;2-范数:是通常意义上的模(距离)

范数的图形表示如下:

4、正则化为什么就能防止过拟合

参考:http://www.cnblogs.com/heguanyou/p/7582578.html

过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。

从几何解释:

图1 上面中的蓝色轮廓线是没有正则化损失函数的等高线,中心的蓝色点为最优解,左图、右图分别为L2、L1正则化给出的限制。

可以看到在正则化的限制之下,L2正则化给出的最优解 $w^{*} $是使解更加靠近原点,也就是说L2正则化能降低参数范数的总和,使得模型的解偏向于 norm 较小的 W,通过限制 W 的 norm 的大小实现了对模型空间的限制,从而在一定程度上避免了 overfitting 。不过 L2正则化并不具有产生稀疏解的能力,得到的系数 仍然需要数据中的所有特征才能计算预测结果,从计算量上来说并没有得到改观。

L1正则化给出的最优解$w^{*}$是使解更加靠近某些轴,而其它的轴则为0,所以L1正则化能使得到的参数稀疏化。稀疏的解除了计算量上的好处之外,更重要的是更具有“可解释性”。比如说,一个病如果依赖于 5 个变量的话,将会更易于医生理解、描述和总结规律,但是如果依赖于 5000 个变量的话,基本上就超出人肉可处理的范围了。

因此正则化是通过约束参数的范数使其不要太大,使其在一定程度上减少过拟合情况。

5、Dropout与Batch Normalization

http://www.cnblogs.com/maybe2030/p/9231231.html

正则化(Regularization)本质的更多相关文章

  1. zzL1和L2正则化regularization

    最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化 ...

  2. 7、 正则化(Regularization)

    7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fittin ...

  3. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  4. 斯坦福第七课:正则化(Regularization)

    7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集( ...

  5. (五)用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

  6. [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)

    欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...

  7. CS229 5.用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

  8. [C3] 正则化(Regularization)

    正则化(Regularization - Solving the Problem of Overfitting) 欠拟合(高偏差) VS 过度拟合(高方差) Underfitting, or high ...

  9. 1.4 正则化 regularization

    如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则 ...

  10. 机器学习(五)--------正则化(Regularization)

    过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. ...

随机推荐

  1. 学习ASP.NET Core Razor 编程系列十七——分组

    学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...

  2. 在vue项目中添加全局提示框

    1.写一个提示框组件:msg.vue (注明:这里用两个div的原因是成功和失败的提示不能用同一个div,因为他们可能紧接着出现,所以不能从始至终只有一个提示框在工作) 2.写一个调用此组建的js : ...

  3. python 文件和目录操作题库

    1. 把一个目录下所有的文件删除,在所有的目录下新建一个a.txt的文件,并在文件下写入"python"关键字.   解题思路:        1.如果目录存在则切换进入目录    ...

  4. 论AOP面向切面编程思想

    原创: eleven 原文:https://mp.weixin.qq.com/s/8klfhCkagOxlF1R0qfZsgg [前言] AOP(Aspect-Oriented Programming ...

  5. mysql 盲注二分法python脚本

    import urllib import urllib2 def doinject(payload): url = 'xxxxxxxxxxxxxxxxxxxxx' values = {'injecti ...

  6. C# T4 模板 数据库实体类生成模板(带注释,娱乐用)

     说明:..,有些工具生成实体类没注释,不能和SqlServer的MS_Description属性一起使用,然后照着网上的资源,随便写了个生成模板,自娱自乐向,其实卵用都没有参考教程    1.htt ...

  7. 弹性布局--flex方向

    flex方向 flex方向由flex-direction特性决定,用于定义弹性布局模式.flex-direction共有4种模式:从左向右.从右向左.从上往下.从下往上. 主轴 主轴的起点与终点定义了 ...

  8. Spring boot入门(三):SpringBoot集成结合AdminLTE(Freemarker),利用generate自动生成代码,利用DataTable和PageHelper进行分页显示

    关于SpringBoot和PageHelper,前篇博客已经介绍过Spring boot入门(二):Spring boot集成MySql,Mybatis和PageHelper插件,前篇博客大致讲述了S ...

  9. C学习笔记(逗号表达式)

    (1)书写: ① int i; i=(i=*,i*); printf("%d\n",i); i=60; ② int i; i=i=*,i*; printf("%d\n&q ...

  10. SQL Server数据库————增删改查

    --增删改查--增 insert into 表名(列名) value(值列表) --删 delect from 表名 where 条件 --改 update 表名 set 列名=值1,列名2=值2 w ...