1.Harris角点检测

Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点。基本原理是根据公式:



化简为求解矩阵,最后根据矩阵的特征值判断是否为角点





实现效果:



代码(不用OpenCV):


# -*- coding: utf-8 -*-
from pylab import *
from PIL import Image
from numpy import *
from scipy.ndimage import filters print 'hello' def compute_harris_response(im,sigma=3):
""" Compute the Harris corner detector response function
for each pixel in a graylevel image. """ # derivatives
imx = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy) # compute components of the Harris matrix
Wxx = filters.gaussian_filter(imx*imx,sigma)
Wxy = filters.gaussian_filter(imx*imy,sigma)
Wyy = filters.gaussian_filter(imy*imy,sigma) # determinant and trace
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy return Wdet / Wtr def get_harris_points(harrisim,min_dist=10,threshold=0.1):
""" Return corners from a Harris response image
min_dist is the minimum number of pixels separating
corners and image boundary. """ # find top corner candidates above a threshold
corner_threshold = harrisim.max() * threshold
harrisim_t = (harrisim > corner_threshold) * 1 # get coordinates of candidates
coords = array(harrisim_t.nonzero()).T # ...and their values
candidate_values = [harrisim[c[0],c[1]] for c in coords] # sort candidates (reverse to get descending order)
index = argsort(candidate_values)[::-1] # store allowed point locations in array
allowed_locations = zeros(harrisim.shape)
allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1 # select the best points taking min_distance into account
filtered_coords = []
for i in index:
if allowed_locations[coords[i,0],coords[i,1]] == 1:
filtered_coords.append(coords[i])
allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),
(coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0 return filtered_coords def plot_harris_points(image,filtered_coords):
""" Plots corners found in image. """ figure()
gray()
imshow(image)
plot([p[1] for p in filtered_coords],
[p[0] for p in filtered_coords],'*')
axis('off')
show() def get_descriptors(image,filtered_coords,wid=5):
""" For each point return pixel values around the point
using a neighbourhood of width 2*wid+1. (Assume points are
extracted with min_distance > wid). """ desc = []
for coords in filtered_coords:
patch = image[coords[0]-wid:coords[0]+wid+1,
coords[1]-wid:coords[1]+wid+1].flatten()
desc.append(patch) return desc def match(desc1,desc2,threshold=0.5):
""" For each corner point descriptor in the first image,
select its match to second image using
normalized cross correlation. """ n = len(desc1[0]) # pair-wise distances
d = -ones((len(desc1),len(desc2)))
for i in range(len(desc1)):
for j in range(len(desc2)):
d1 = (desc1[i] - mean(desc1[i])) / std(desc1[i])
d2 = (desc2[j] - mean(desc2[j])) / std(desc2[j])
ncc_value = sum(d1 * d2) / (n-1)
if ncc_value > threshold:
d[i,j] = ncc_value ndx = argsort(-d)
matchscores = ndx[:,0] return matchscores def match_twosided(desc1,desc2,threshold=0.5):
""" Two-sided symmetric version of match(). """ matches_12 = match(desc1,desc2,threshold)
matches_21 = match(desc2,desc1,threshold) ndx_12 = where(matches_12 >= 0)[0] # remove matches that are not symmetric
for n in ndx_12:
if matches_21[matches_12[n]] != n:
matches_12[n] = -1 return matches_12 def appendimages(im1,im2):
""" Return a new image that appends the two images side-by-side. """ # select the image with the fewest rows and fill in enough empty rows
rows1 = im1.shape[0]
rows2 = im2.shape[0] if rows1 < rows2:
im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))),axis=0)
elif rows1 > rows2:
im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))),axis=0)
# if none of these cases they are equal, no filling needed. return concatenate((im1,im2), axis=1) def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):
""" Show a figure with lines joining the accepted matches
input: im1,im2 (images as arrays), locs1,locs2 (feature locations),
matchscores (as output from 'match()'),
show_below (if images should be shown below matches). """ im3 = appendimages(im1,im2)
if show_below:
im3 = vstack((im3,im3)) imshow(im3) cols1 = im1.shape[1]
for i,m in enumerate(matchscores):
if m>0:
plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],'c')
axis('off') def imresize(im,sz):
""" Resize an image array using PIL. """
pil_im = Image.fromarray(uint8(im)) return array(pil_im.resize(sz))
"""
Example of detecting Harris corner points (Figure 2-1 in the book).
""" # 读入图像
im = array(Image.open('swan.jpg').convert('L')) # 检测harris角点
harrisim = compute_harris_response(im) # Harris响应函数
harrisim1 = 255 - harrisim figure()
gray() #画出Harris响应图
subplot(141)
imshow(harrisim1)
print harrisim1.shape
axis('off')
axis('equal') threshold = [0.01, 0.05, 0.1]
for i, thres in enumerate(threshold):
filtered_coords = get_harris_points(harrisim, 6, thres)
subplot(1, 4, i+2)
imshow(im)
print im.shape
plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], '*')
axis('off') #原书采用的PCV中PCV harris模块
#harris.plot_harris_points(im, filtered_coords) # plot only 200 strongest
# harris.plot_harris_points(im, filtered_coords[:200]) # Figure 2-2下面的图
im1 = array(Image.open("swan.jpg").convert("L"))
im2 = array(Image.open("swan.jpg").convert("L"))
# resize to make matching faster
im1 = imresize(im1, (im1.shape[1]/2, im1.shape[0]/2))
im2 = imresize(im2, (im2.shape[1]/2, im2.shape[0]/2)) wid = 5
harrisim = compute_harris_response(im1, 5)
filtered_coords1 = get_harris_points(harrisim, wid+1)
d1 = get_descriptors(im1, filtered_coords1, wid) harrisim = compute_harris_response(im2, 5)
filtered_coords2 = get_harris_points(harrisim, wid+1)
d2 = get_descriptors(im2, filtered_coords2, wid) print 'starting matching'
matches = match_twosided(d1, d2) figure()
gray()
plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()

OpenCV函数cv2.cornerHarris() 有四个参数 其作用分别为 :

img - Input image, it should be grayscale and float32 type.

blockSize - It is the size of neighbourhood considered for corner detection

ksize - Aperture parameter of Sobel derivative used.

k - Harris detector free parameter in the equation.

当然可以使用OpenCV在亚像素上提高算法的精度,使用函数cv2.cornerSubPix(),不过应该使用最新版的OpenCV 我电脑上是2.4.9版本,好像文档[2]中的代码没有调试通过,

下面是OpenCV代码的效果:

代码:

# -*- coding: utf-8 -*-
"""
Created on Sat Jun 11 23:21:18 2016 @author: season
""" import cv2
import numpy as np filename = 'swan.jpg'
img = cv2.imread(filename)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray = np.float32(gray)
dst = cv2.cornerHarris(gray,2,3,0.04) #result is dilated for marking the corners, not important
dst = cv2.dilate(dst,None) # Threshold for an optimal value, it may vary depending on the image.
img[dst>0.01*dst.max()]=[0,0,255] cv2.imshow('dst',img)
if cv2.waitKey(0) & 0xff == 27:
cv2.destroyAllWindows()

测试OpenCV,numpy模块的代码:

#test cv2 and numpy package
print cv2.__version__
a = np.arange(10)
print(a)

2.sift特征

在Harris角点中对于下图所示的特征,小窗口中可能认为是角点,当窗口尺寸变化,则可能检测不到角点。



2004年提出的Scale Invariant Feature Transform (SIFT) 是改进的基于尺度不变的特征检测器。

SIFT特征包括兴趣点检测器和描述子,它对于尺度,旋转和亮度都具有不变性。

有下面四个步骤

1. Scale-space Extrema Detection

2. Keypoint Localization

3. Orientation Assignment

4. Keypoint Descriptor

5. Keypoint Matching

sift特征点检测效果:



sift的OpenCV代码比较简单:

# -*- coding: utf-8 -*-
"""
Created on Sat Jun 11 20:22:51 2016 @author: season
""" import cv2 import numpy as np
#import pdb
#pdb.set_trace()#turn on the pdb prompt #test cv2 and numpy package
print cv2.__version__
a = np.arange(10)
print(a) img = cv2.imread('swan.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) sift = cv2.SIFT()
kp = sift.detect(gray,None) img=cv2.drawKeypoints(gray,kp) cv2.imwrite('sift_keypoints.jpg',img)
cv2.imshow("sift_keypoint",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.SURF特征点

In 2006, three people, Bay, H., Tuytelaars, T. and Van Gool, L, published another paper, “SURF: Speeded Up Robust Features” which introduced a new algorithm called SURF. As name suggests, it is a speeded-up version of SIFT.

在SURF算法中,特征点的判据为某像素亮度的Hessian矩阵的行列式(Dxx*Dyy-Dxy*Dxy)为一个极值。由于Hessian矩阵的计算需要用到偏导数的计算,这一般通过像素点亮度值与高斯核的某一方向偏导数卷积而成;在SURF算法里,为提高算法运行速度,在精度影响很小的情况下,用近似的盒状滤波器(0,1,1组成的box filter)代替高斯核。因为滤波器仅有0,-1,1,因此卷积的计算可以用积分图像(Integral image)来优化(O(1)的时间复杂度),大大提高了效率。

Surf在速度上比sift要快许多,这主要得益于它的积分图技术,已经Hessian矩阵的利用减少了降采样过程,另外它得到的特征向量维数也比较少,有利于更快的进行特征点匹配。

基于surf的人脸识别:

# -*- coding: utf-8 -*-
"""
Created on Wed Jun 15 22:05:44 2016 @author: Administrator
"""
import cv2 import numpy opencv_haystack =cv2.imread('woman.jpg')
opencv_needle =cv2.imread('face.jpg') ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY) # build feature detector and descriptor extractor
hessian_threshold = 85
detector = cv2.SURF(hessian_threshold)
(hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
(nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False) # extract vectors of size 64 from raw descriptors numpy arrays
rowsize = len(hdescriptors) / len(hkeypoints)
if rowsize > 1:
hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
#print hrows.shape, nrows.shape
else:
hrows = numpy.array(hdescriptors, dtype = numpy.float32)
nrows = numpy.array(ndescriptors, dtype = numpy.float32)
rowsize = len(hrows[0]) # kNN training - learn mapping from hrow to hkeypoints index
samples = hrows
responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
#print len(samples), len(responses)
knn = cv2.KNearest()
knn.train(samples,responses) # retrieve index and value through enumeration
count = 1 for i, descriptor in enumerate(nrows):
descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
#print i, descriptor.shape, samples[0].shape
retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
res, dist = int(results[0][0]), dists[0][0]
#print res, dist if dist < 0.1:
count = count+1
# draw matched keypoints in red color
color = (0, 0, 255)
# else:
# # draw unmatched in blue color
# color = (255, 0, 0)
# draw matched key points on haystack image
x,y = hkeypoints[res].pt
center = (int(x),int(y))
cv2.circle(opencv_haystack,center,2,color,-1)
# draw matched key points on needle image
x,y = nkeypoints[i].pt
center = (int(x),int(y))
cv2.circle(opencv_needle,center,2,color,-1) cv2.imshow("Input Image", opencv_haystack)
cv2.waitKey(0)
cv2.imshow("The match Result", opencv_needle)
cv2.waitKey(0) print count
if count>40:
print "Yes Success!"
else:
print "False Face!"
#cv2.waitKey(0)
#cv2.destroyAllWindows()

4.ORB特征

一种新的具有局部不变性的特征 —— ORB特征,从它的名字中可以看出它是对FAST特征点与BREIF特征描述子的一种结合与改进,这个算法是由Ethan Rublee,Vincent Rabaud,Kurt Konolige以及Gary R.Bradski在2011年一篇名为“ORB:An Efficient Alternative to SIFT or SURF”的文章中提出。就像文章题目所写一样,ORB是除了SIFT与SURF外一个很好的选择,而且它有很高的效率,最重要的一点是它是免费的,SIFT与SURF都是有专利的,你如果在商业软件中使用,需要购买许可。

实现效果:

代码:

# -*- coding: utf-8 -*-
"""
Created on Thu Jun 16 11:11:18 2016 @author: Administrator
""" import numpy as np
import cv2
#from matplotlib import pyplot as plt
print cv2.__version__ img1 = cv2.imread('woman.jpg',0) # queryImage
img2 = cv2.imread('face.jpg',0) # trainImage
def drawMatches(img1, kp1, img2, kp2, matches):
"""
My own implementation of cv2.drawMatches as OpenCV 2.4.9
does not have this function available but it's supported in
OpenCV 3.0.0 This function takes in two images with their associated
keypoints, as well as a list of DMatch data structure (matches)
that contains which keypoints matched in which images. An image will be produced where a montage is shown with
the first image followed by the second image beside it. Keypoints are delineated with circles, while lines are connected
between matching keypoints. img1,img2 - Grayscale images
kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint
detection algorithms
matches - A list of matches of corresponding keypoints through any
OpenCV keypoint matching algorithm
""" # Create a new output image that concatenates the two images together
# (a.k.a) a montage
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1] out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8') # Place the first image to the left
out[:rows1,:cols1] = np.dstack([img1, img1, img1]) # Place the next image to the right of it
out[:rows2,cols1:] = np.dstack([img2, img2, img2]) # For each pair of points we have between both images
# draw circles, then connect a line between them
for mat in matches: # Get the matching keypoints for each of the images
img1_idx = mat.queryIdx
img2_idx = mat.trainIdx # x - columns
# y - rows
(x1,y1) = kp1[img1_idx].pt
(x2,y2) = kp2[img2_idx].pt # Draw a small circle at both co-ordinates
# radius 4
# colour blue
# thickness = 1
cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1) # Draw a line in between the two points
# thickness = 1
# colour blue
cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1) # Show the image
cv2.imshow('Matched Features', out)
cv2.waitKey(0)
cv2.destroyWindow('Matched Features') # Also return the image if you'd like a copy
return out # Initiate SIFT detector
orb = cv2.ORB() # find the keypoints and descriptors with SIFT
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)
# create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # Match descriptors.
matches = bf.match(des1,des2) # Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance) # Draw first 10 matches.
img3 = drawMatches(img1,kp1,img2,kp2,matches[:10]) cv2.imshow('dst',img3)
if cv2.waitKey(0) & 0xff == 27:
cv2.destroyAllWindows()
#plt.imshow(img3),plt.show() '''
draw match 函数在下面的链接中有自己的实现,我直接复制过来了 http://stackoverflow.com/questions/20259025/module-object-has-no-attribute-drawmatches-opencv-python
'''

未完待续

参考文献

[1]http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html

[2]http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#exercises

python+OpenCV 特征点检测的更多相关文章

  1. 【python+opencv】直线检测+圆检测

     Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...

  2. OpenCV特征点检测------ORB特征

    OpenCV特征点检测------ORB特征 ORB是是ORiented Brief的简称.ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt ...

  3. OpenCV特征点检测匹配图像-----添加包围盒

    最终效果: 其实这个小功能非常有用,甚至加上只有给人感觉好像人脸检测,目标检测直接成了demo了,主要代码如下: // localize the object std::vector<Point ...

  4. OpenCV特征点检测------Surf(特征点篇)

    Surf(Speed Up Robust Feature) Surf算法的原理                                                              ...

  5. OpenCV特征点检测

    特征点检测 目标 在本教程中,我们将涉及: 使用 FeatureDetector 接口来发现感兴趣点.特别地: 使用 SurfFeatureDetector 以及它的函数 detect 来实现检测过程 ...

  6. OpenCV特征点检测——Surf(特征点篇)&flann

    学习OpenCV--Surf(特征点篇)&flann 分类: OpenCV特征篇计算机视觉 2012-04-20 21:55 19887人阅读评论(20)收藏举报 检测特征 Surf(Spee ...

  7. OpenCV特征点检测——ORB特征

            ORB算法 目录(?)[+] 什么是ORB 如何解决旋转不变性 如何解决对噪声敏感的问题 关于尺度不变性 关于计算速度 关于性能 Related posts 什么是ORB 七 4 Ye ...

  8. OpenCV特征点检测算法对比

    识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...

  9. python+OpenCV进行人脸检测【转】

    OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: $ su ...

随机推荐

  1. 2015 多校联赛 ——HDU5289(二分+ST)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. 【NOIP2017 OFO(下)】

    ·我不知道对不对,只是不想让大米兔就这样离开.      by tkys_Austin;                    [另一只情绪化的兔子]        今年的11月12日NOIP提高组, ...

  3. 【codevs 1911 孤岛营救问题】

    ·为了分析方便,可以先做一个题目简化.去掉"钥匙"这个条件,那么就是一个BFS或者SPFA--现在加上该条件.如本题只给出最多两种钥匙,当然你可以继续坚持BFS等方式,时间不会太差 ...

  4. bzoj 1875: [SDOI2009]HH去散步

    Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...

  5. [BZOJ]1003 物流运输(ZJOI2006)

    挖坑,日常划水. 从BZOJ上的AC人数来看这题确实不难,但做这种题的常见思路让小C决定还是mark一下. Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才 ...

  6. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  7. 笔记13 AOP中After和AfterReturning的区别

    AOP中 @Before @After @AfterThrowing@AfterReturning的执行顺序 public Object invoke(Object proxy, Method met ...

  8. JSON.NET的Self referencing loop detected with type的原因以及解决办法

    模型中有循环引用是很常见的.例如,以下模型显示双向导航属性: : public class Category : { : public Category() : { : Products = new ...

  9. 数组查找算法的C语言 实现-----线性查找和二分查找

    线性查找  Linear Search 用户输入学生学号的成绩 二分查找  Binary Search 要求数据表是已经排好序的 程序存在小的瑕疵

  10. POJ 放苹果问题(递归)

    首先我们想象有一个函数count  f(m,n)可以把m个苹果放到n个盘子中. 根据 n 和 m 的关系可以进一步分析: 特殊的m <=1|| n <= 1时只有一种方法: 当 m < ...