sigmoid_cross_entropy_with_logits
sigmoid_cross_entropy_with_logits
觉得有用的话,欢迎一起讨论相互学习~




函数定义
def sigmoid_cross_entropy_with_logits(_sentinel=None, # pylint: disable=invalid-name
labels=None, logits=None,
name=None):
函数意义
- 这个函数的作用是计算经sigmoid 函数激活之后的交叉熵。
- 为了描述简洁,我们规定 x = logits,z = targets,那么 Logistic 损失值为:
\]
- 对于x<0的情况,为了执行的稳定,使用计算式:
\]
- 为了确保计算稳定,避免溢出,真实的计算实现如下:
\]
- logits 和 targets 必须有相同的数据类型和数据维度。
- 它适用于每个类别相互独立但互不排斥的情况,在一张图片中,同时包含多个分类目标(大象和狗),那么就可以使用这个函数。
例子
import numpy as np
import tensorflow as tf
input_data = tf.Variable(np.random.rand(1, 3), dtype=tf.float32)
# np.random.rand()传入一个shape,返回一个在[0,1)区间符合均匀分布的array
output = tf.nn.sigmoid_cross_entropy_with_logits(logits=input_data, labels=[[1.0, 0.0, 0.0]])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(output))
# [[ 0.5583781 1.06925142 1.08170223]]
输入与输出
输入
- _sentinel: 一般情况下不怎么使用的参数,可以直接保持默认使其为None
- logits: 一个Tensor。数据类型是以下之一:float32或者float64。
- targets: 一个Tensor。数据类型和数据维度都和 logits 相同。
- name: 为这个操作取个名字。
输出 - 一个 Tensor ,数据维度和 logits 相同。
推导过程
设x = logits, z = labels.
- logistic loss 计算式为:
- 其中交叉熵(cross entripy)基本函数式
z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))
对于x<0时,为了避免计算exp(-x)时溢出,我们使用以下这种形式表示
x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))
综合x>0和x<0的情况,我们使用以下函数式
$$max(x, 0) - x * z + log(1 + exp(-abs(x)))$$
注意logits和labels必须具有相同的type和shape
sigmoid_cross_entropy_with_logits的更多相关文章
- tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.sigmoid_cross_entropy_with_logits sigmoid_cross_entropy_with_logits( _sentinel=None, labels=No ...
- tensorflow sigmoid_cross_entropy_with_logits 函数解释
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None) sigmoid_ ...
- tf.nn.sigmoid_cross_entropy_with_logits 分类
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None) logits和la ...
- 【转】TensorFlow练习20: 使用深度学习破解字符验证码
验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人:设计理念是对人友好,对机 ...
- Tensorflow二分类处理dense或者sparse(文本分类)的输入数据
这里做了一些小的修改,感谢谷歌rd的帮助,使得能够统一处理dense的数据,或者类似文本分类这样sparse的输入数据.后续会做进一步学习优化,比如如何多线程处理. 具体如何处理sparse 主要是使 ...
- Tensorflow mlp二分类
只是简单demo, 可以看出tensorflow非常简洁,适合快速实验 import tensorflow as tf import numpy as np import melt_datas ...
- Tensorflow 实现稠密输入数据的逻辑回归二分类
首先 实现一个尽可能少调用tf.nn模块儿的,自己手写相关的function import tensorflow as tf import numpy as np import melt_da ...
- TF Boys (TensorFlow Boys ) 养成记(五)
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...
随机推荐
- 你不知道的JSON.stringify和JSON.parse
json是JavaScript 对象表示法(JavaScript Object Notation),是一种简单的数据格式,类似于XML,其格式为名称/值对,数据用逗号隔开,名称必须用双引号括起来.例如 ...
- 一步一步创建ASP.NET MVC5程序[Repository+Autofac+Automapper+SqlSugar](四)
前言 上一篇<一步一步创建ASP.NET MVC5程序[Repository+Autofac+Automapper+SqlSugar](三)>,我们完成了: * 引用SqlSugar * ...
- Node+mongodb线上部署到阿里云
Node+mongodb线上部署到阿里云 部署使用的主要工具是pm2+nginx,使用码云的私有仓库,自动部署到服务器,私有仓库和服务器要事先设置好免密码登录.使用DNSPOD进行域名解析.事先准备好 ...
- 【JavaScript的五种基本数据类型及转换】
js中有六种数据类型,包括五种基本数据类型(Number,String,Boolean,Null,Undefined),和一种混合数据类型就是特殊的(Object). "undefined& ...
- [bzoj3955] [WF2013]Surely You Congest
首先最短路长度不同的人肯定不会冲突. 对于最短路长度相同的人,跑个最大流就行了..当然只有一个人就不用跑了 看起来会T得很惨..但dinic在单位网络里是O(m*n^0.5)的... #include ...
- 最长上升子序列(LIS经典变型) dp学习~5
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
- sql中查询同一列所有值出现的次数
尊重原创:http://blog.csdn.net/love_java_cc/article/details/52234889 有表如下table3: 需要查询country中各个国家出现的次数 SQ ...
- UEP-时间
时间戳转化为Date(or String) SimpleDateFormat format = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" ...
- window下spyder的快捷键
块注释/块反注释 Ctrl + 4/5 断点设置 F12 关闭所有 Ctrl + Shift + W 代码完成 Ctrl +空格键 条件断点 SHIFT + F12 配置 F6 复制 Ctrl + C ...
- 织梦dedecmsV5.7联动类型无法显示的处理方法
最近织梦dedecms在新的功能中添加了一个联动类型这样的一个功能.所谓的联动类型,类似于一级目录下有二级目录,二级目录下又有三级目录,可以理解为数据结构中树形结构.级和级之间都是有着联系的.为了让大 ...