参考:《机器学习实战》- Machine Learning in Action

一、 基本思想

 聚类是一种无监督的学习,它将相似的对象归到同一簇中。它有点像全自动分类。聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好。之所以称作K-均值,是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。

 K-均值算法的工作流程是这样的。首先,随机确定k个初始点作为质心。然后将数据集中的每个点分配到一个簇中,具体来讲,为每个点找距离其最近的质心,并将其分配给该质心所对应的簇。这一步完成后,每个簇的质心更新为该簇所有点的平均值。

 伪代码如下:

创建k个点作为起始质心(经常是随机选择)
当任意一个点的簇分配结果发生改变时
对数据集中的每个数据点
对每个质心
计算质心与数据点之间的距离
将数据点分配到距离其最近的簇
对每个簇,计算簇中所有点的均值并将均值作为质心

二、 代码

# -*- coding:utf8 -*-
from numpy import * def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) # 获得k个随机质心的集合
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids def kMeans(dataSet, k, distMeans=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = inf
minIndex = -1
for j in range(k):
distJI = distMeans(centroids[j,:], dataSet[i,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,0] = minIndex, minDist**2
print centroids
for cent in range(k):
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A == cent)[0]]
centroids[cent,:] = mean(ptsInClust, axis=0)
return centroids, clusterAssment if __name__ == "__main__":
pass

python实现K聚类算法的更多相关文章

  1. Python实现 K_Means聚类算法

    使用 Python实现 K_Means聚类算法: 问题定义 聚类问题是数据挖掘的基本问题,它的本质是将n个数据对象划分为 k个聚类,以便使得所获得的聚类满足以下条件: 同一聚类中的数据对象相似度较高 ...

  2. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  3. Python 实现分层聚类算法

    ''' 1.将所有样本都看作各自一类 2.定义类间距离计算公式 3.选择距离最小的一堆元素合并成一个新的类 4.重新计算各类之间的距离并重复上面的步骤 5.直到所有的原始元素划分成指定数量的类 程序要 ...

  4. Python实现DBSCAN聚类算法(简单样例测试)

    发现高密度的核心样品并从中膨胀团簇. Python代码如下: # -*- coding: utf-8 -*- """ Demo of DBSCAN clustering ...

  5. 用python实现k近邻算法

    用python写程序真的好舒服. code: import numpy as np def read_data(filename): '''读取文本数据,格式:特征1 特征2 -- 类别''' f=o ...

  6. python 聚类分析 k均值算法

    dataSet = [ #数据集 # 1 [0.697, 0.460], # 2 [0.774, 0.376], # 3 [0.634, 0.264], # 4 [0.608, 0.318], # 5 ...

  7. 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...

  8. 【机器学习】K均值算法(II)

    k聚类算法中如何选择初始化聚类中心所在的位置. 在选择聚类中心时候,如果选择初始化位置不合适,可能不能得出我们想要的局部最优解. 而是会出现一下情况: 为了解决这个问题,我们通常的做法是: 我们选取K ...

  9. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

随机推荐

  1. EntityFramework Core 2.0 Explicitly Compiled Query(显式编译查询)

    前言 EntityFramework Core 2.0引入了显式编译查询,在查询数据时预先编译好LINQ查询便于在请求数据时能够立即响应.显式编译查询提供了高可用场景,通过使用显式编译的查询可以提高查 ...

  2. ajax页面跳转(后台返回的是一个url地址,或者自己传进去的是url地址)

    function modifyMerchantInfo(merchant_code) { $.ajax({ url: '/intra/crm/merchant/OrderMgr.htm?method= ...

  3. GAN 转

    生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常 ...

  4. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  5. 【POJ2774】Long Long Message(后缀数组)

    [POJ2774]Long Long Message(后缀数组) 题面 Vjudge Description Little cat在Byterland的首都读物理专业.这些天他收到了一条悲伤地信息:他 ...

  6. sqoop2报错

    sqoop:000> create link --cid 4 Creating link for connector with id 4Exception has occurred during ...

  7. php表单提交时获取不到post数据的解决方法

    找到了一位博主的方法完美解决,链接如下: http://blog.csdn.net/whd526/article/details/53263181

  8. 《深入理解Bootstrap》读书笔记(二)

    列表 1.普通列表 普通列表的使用没有什么变化,只是在原本的基础上对margin和行间距做了一些调整. 2.有序列表 有序列表的使用也是没有什么变化,只是在原本的基础上对margin和行间距做了一些调 ...

  9. 基于Jmeter的自动化测试实施方案设计

    前言: Jmeter是目前最流行的一种测试工具,基于此工具我们搭建了一整套的自动化方案,包括了脚本添加配置.本地配置和运行.服务器配置等内容,完成了自动化测试闭环,通过这种快捷简便高效的方式,希望可以 ...

  10. sublime安装、注册、插件

    1. sublime下载:http://www.sublimetext.com/3 2. 输入注册码: help->Enter License —– BEGIN LICENSE —– Antho ...