一、mysql作为数据源

import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

/**
* mysql作为数据源
*
* schema信息
* root
* |-- uid: integer (nullable = false)
* |-- xueyuan: string (nullable = true)
* |-- number_one: string (nullable = true)
*/
object JdbcSource {
def main(args: Array[String]): Unit = {
//1.sparkSQL 创建sparkSession
val sparkSession: SparkSession = SparkSession.builder().appName("JdbcSource")
.master("local[2]").getOrCreate() //2.加载数据源
val urlData: DataFrame = sparkSession.read.format("jdbc").options(Map(
"url" -> "jdbc:mysql://localhost:3306/urlcount",
"driver" -> "com.mysql.jdbc.Driver",
"dbtable" -> "url_data",
"user" -> "root",
"password" -> "root"
)).load() //测试
//urlData.printSchema()
//urlData.show() //3.过滤数据
val fData: Dataset[Row] = urlData.filter(x => {
//uid>2 如何拿到uid?
x.getAs[Int](0) > 2
}) fData.show()
sparkSession.stop()
}
}

mysql数据:

二、Spark写出数据格式

import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object JdbcSource1 {
def main(args: Array[String]): Unit = {
//1.sparkSQL 创建sparkSession
val sparkSession: SparkSession = SparkSession.builder().appName("JdbcSource")
.master("local[2]").getOrCreate() import sparkSession.implicits._
//2.加载数据源
val urlData: DataFrame = sparkSession.read.format("jdbc").options(Map(
"url" -> "jdbc:mysql://localhost:3306/urlcount",
"driver" -> "com.mysql.jdbc.Driver",
"dbtable" -> "url_data",
"user" -> "root",
"password" -> "root"
)).load() //3.uid>2
val r = urlData.filter($"uid" > 2)
val rs: DataFrame = r.select($"xueyuan", $"number_one") //val rs: DataFrame = r.select($"xueyuan") //写入以text格式
//rs.write.text("e:/saveText") //写入以json格式
//rs.write.json("e:/saveJson") //写入以csv格式
rs.write.csv("e:/saveCsv") //rs.write.parquet("e:/savePar") rs.show()
sparkSession.stop()
}
}

三、Json作为数据源

import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object JsonSource {
def main(args: Array[String]): Unit = {
//1.创建sparkSession
val sparkSession: SparkSession = SparkSession.builder().appName("JsonSource")
.master("local[2]").getOrCreate() import sparkSession.implicits._
//2.读取json数据源
val jread: DataFrame = sparkSession.read.json("e:/saveJson") //3.处理数据
val fread: Dataset[Row] = jread.filter($"xueyuan" === "bigdata") //4.触发action
fread.show() //5.关闭资源
sparkSession.stop()
}
}

四、Csv作为数据源

import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object CsvSource {
def main(args: Array[String]): Unit = {
//1.创建sparkSession
val sparkSession: SparkSession = SparkSession.builder().appName("CsvSource")
.master("local[2]").getOrCreate() import sparkSession.implicits._
//2.读取csv数据源
val cread: DataFrame = sparkSession.read.csv("e:/saveCsv") //3.处理数据
val rdf = cread.toDF("id", "xueyuan")
val rs = rdf.filter($"id" <= 3) //4.触发action
rs.show() //5.关闭资源
sparkSession.stop()
}
}

Spark 数据源的更多相关文章

  1. 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器

    第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...

  2. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  3. Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)

    概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...

  4. Spark SQL官网阅读笔记

    Spark SQL是Spark中用于结构化数据处理的组件. Spark SQL可以从Hive中读取数据. 执行结果是Dataset/DataFrame. DataFrame是一个分布式数据容器.然而D ...

  5. 【Spark深入学习 -16】官网学习SparkSQL

    ----本节内容-------1.概览        1.1 Spark SQL        1.2 DatSets和DataFrame2.动手干活        2.1 契入点:SparkSess ...

  6. Spark(1.6.1) Sql 编程指南+实战案例分析

    首先看看从官网学习后总结的一个思维导图 概述(Overview) Spark SQL是Spark的一个模块,用于结构化数据处理.它提供了一个编程的抽象被称为DataFrames,也可以作为分布式SQL ...

  7. Spark的MLlib和ML库的区别

    机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.其目标是使实际的机器学习可扩展和容易.在高层次上,它提供了如下工具: ML算法:通用学习算法,如分类,回归,聚类和协同过滤 特 ...

  8. Apache Spark 2.2.0 中文文档

    Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...

  9. Hadoop spark mongo复制集

    启动hadoop cd /usr/local/hadoop/hadoop $hadoop namenode -format # 启动前格式化namenode $./sbin/start-all.sh ...

随机推荐

  1. iOS开发-- 使用VVDocumenter-Xcode添加代码注释

    在开发Java代码过程中,我们只需在Eclipse中敲/**即可生成字段.方法对应的文档,简单便捷. 在Xcode如果想添加文档注释,需要花费很多时间,有没有简单.快速的方法搞定这一切? 在网上搜索了 ...

  2. CMake INSTALL 命令设置exe dll lib的安装位置

    install(TARGETS ${OUT_NAME} RUNTIME DESTINATION ${CMAKE_BINARY_DIR}/bin LIBRARY DESTINATION ${CMAKE_ ...

  3. 对C#中几个循环语句的使用,请教

    今天是在云和数据学院学习的第四天,由于各种原因···今天自己预习的循环语句的用法以及写了几个程序,也遇到各种的问题了···纠结.由于还是在学习的很初初初级,所以好多简单的方法还是不知道怎么写出来,只得 ...

  4. PyQt4简单的窗口程序

    下面的程序显示了一个简单的小窗口. #!/usr/bin/python # -*- coding:utf-8 -*- import sys from PyQt4 import QtGui app = ...

  5. erlang安装

    在linux安装erlang只能下载源码安装包来安装,可以到erlang官方网站上下载

  6. 使用API函数EnumWindows()枚举顶层窗口

      http://simpleease.blog.163.com/blog/static/1596085820052770290/ 要枚举Windows当前所有打开的顶层窗口,可使用Windows A ...

  7. c# linq update单个字段

    1.更新单个字段 /// <summary> /// 更新字段 /// </summary> /// <typeparam name="T">& ...

  8. Android开发训练之第五章——Building Apps with Connectivity & the Cloud

    Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...

  9. Win8交互UX——鼠标交互

    针对触摸输入优化 Window 应用商店应用设计,并在默认情况下获得基本的鼠标支持. 设计和构建用户可以通过鼠标交互的 Windows 应用商店应用. 鼠标输入最适合那些需要精确指向和单击的用户交互. ...

  10. 解决win764位安装pycrypto遇到unable to find vcvarsall.bat 问题

    今天安装pycrypto的库.安装中遇到一些问题,这里简单记录下来. 首先安装python,pycrypto是基于python的一个库. 第一种:搜索关键字pycrypto,找到pycrypto的官方 ...