Linear Regression Using Least Squares Method 代码实现
1. 原理

2. Octave
function theta = leastSquaresMethod(X, y)
theta = pinv(X' * X) * X' * y;
3. Python
# -*- coding:utf8 -*-
import numpy as np def lse(input_X, _y):
"""
least squares method
:param input_X: np.matrix input X
:param _y: np.matrix y
"""
return (input_X.T * input_X).I * input_X.T * _y def test():
"""
test
:return: None
"""
m = np.loadtxt('linear_regression_using_gradient_descent.csv', delimiter=',')
input_X, y = np.asmatrix(m[:, :-1]), np.asmatrix(m[:, -1]).T
final_theta = lse(input_X, y) t1, t2, t3 = np.array(final_theta).reshape(-1,).tolist()
print('对测试数据 y = 2 - 4x + 2x^2 求得的参数为: %.3f, %.3f, %.3f\n' % (t1, t2, t3)) if __name__ == "__main__":
test()
4. C++
#include <iostream>
#include <Eigen/Dense> using namespace std;
using namespace Eigen; MatrixXd les(MatrixXd &input_X, MatrixXd &y) {
return (input_X.transpose() * input_X).inverse() * input_X.transpose() * y;
} void generate_data(MatrixXd &input_X, MatrixXd &y) {
ArrayXd v = ArrayXd::LinSpaced(, , );
input_X.col() = VectorXd::Constant(, , );
input_X.col() = v.matrix();
input_X.col() = v.square().matrix();
y.col() = * input_X.col() - * input_X.col() + * input_X.col();
y.col() += VectorXd::Random() / ;
} int main() {
MatrixXd input_X(, ), y(, );
generate_data(input_X, y);
cout << "对测试数据 y = 2 - 4x + 2x^2 求得的参数为: " << les(input_X, y).transpose() << endl;
}
Linear Regression Using Least Squares Method 代码实现的更多相关文章
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
- Linear Regression Using Gradient Descent 代码实现
参考吴恩达<机器学习>, 进行 Octave, Python(Numpy), C++(Eigen) 的原理实现, 同时用 scikit-learn, TensorFlow, dlib 进行 ...
- [Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2
Introduction 一.Scikit-learning 广义线性模型 From: http://sklearn.lzjqsdd.com/modules/linear_model.html#ord ...
- Machine Learning #Lab1# Linear Regression
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 机器学习---线性回归(Machine Learning Linear Regression)
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...
随机推荐
- LeetCode——Implement Trie (Prefix Tree)
Description: Implement a trie with insert, search, and startsWith methods. Note:You may assume that ...
- CSS改变插入光标颜色caret-color简介及其它变色方法(转)
一.CSS改变输入框光标颜色的原生属性caret-color CSS caret-color属性可以改变输入框插入光标的颜色,同时又不改变输入框里面的内容的颜色. 例如: input { color: ...
- 泛型实体类List<>绑定到repeater
后台代码: private void bindnewslist() { long num = 100L; List<Model.news> news = _news.GetList(out ...
- [Vue warn]: Error in render: "SyntaxError: Unexpected token ' in JSON at position 1"
一,场景: 字符串转对象: var str = "{'bankRate':5,'YINGUO':0}" 二,操作: JSON.parse(str)时候,报错 [Vue warn]: ...
- 从浏览器输入URL到页面渲染的过程
零.背景 一个web安全工程师在学习web安全和web渗透时候,非常有必要了解整个WEB工作过程. 一.输入URL 这里是最基本的知识:URL是URI的一种实际应用,URI统一资源表示符,URL统一资 ...
- 前端代码在线调试&分享网站
1.RunJs 2.CodePen 3.JsFiddle
- 23种设计模式之责任链模式(Chain of Responsibility)
责任链模式是一种对象的行为型模式,避免请求发送者与接收者耦合在一起,让多个对象都有可能接收请求,将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理它为止.责任链模式不保证每个请求都被接受, ...
- 【BZOJ5091】摘苹果 概率
[BZOJ5091]摘苹果 Description 小Q的工作是采摘花园里的苹果.在花园中有n棵苹果树以及m条双向道路,苹果树编号依次为1到n,每条道路的两 端连接着两棵不同的苹果树.假设第i棵苹果树 ...
- python selenium中等待元素出现及等待元素消失操作
在自动化测试中,很多时候都会有等待页面某个元素出现后能进行下一步操作,或者列表中显示加载,直到加载完成后才进行下一步操作,但时间都不确定,如下图所示 幸运的是,在selenium 2后有一个模块exp ...
- mysql概要(十四)(一)索引
1.索引是对数据库数据建立目录加快了查询速度.索引分为哈希索引和二叉树索引 (大数据量转移,如果表中带有大量字段索引,进行数据导入时,建议先去掉索引导入数据再统一加入索引,减少索引计算量) 2.索引原 ...