斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况

我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有

转移方程:

dp[i][j]=min(dp[i][s]+dp[j-s]-a[i][j]) (表示有两个状态s和j-s都和i联通,我们把这两个状态联通起来,这样多算了一次a[i][j],减去即可)

dp[i][j]=min(dp[i][j],dp[k][j]+a[i][k]) (如果i和k连着,那么,链接i和k,更新dp[i][j]),此处类似与最短路中的松弛操作

来看这道题就是求平面上给定点的斯坦纳树,要求输出路径,我们更新状态的时候记录pre,

spfa松弛(164 ms):

/**************************************************************
Problem: 2595
User: walfy
Language: C++
Result: Accepted
Time:164 ms
Memory:7756 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a, b) ((a)>(b)?(a):(b))
#define Min(a, b) ((a)<(b)?(a):(b))
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;} using namespace std; const double g=10.0,eps=1e-12;
const int N=10+10,maxn=(1<<10)+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct Pre{
int x,y,st;
}pre[N][N][maxn];
int f[N][N][maxn],n,m,a[N][N];
queue<pii>q;
bool vis[N][N];
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
void spfa(int st)
{
while(!q.empty())
{
pii p=q.front();q.pop();
vis[p.fi][p.se]=0;
for(int i=0;i<4;i++)
{
int nx=p.fi+dx[i],ny=p.se+dy[i];
if(1<=nx&&nx<=n&&1<=ny&&ny<=m)
{
if(f[p.fi][p.se][st]+a[nx][ny]<f[nx][ny][st])
{
f[nx][ny][st]=f[p.fi][p.se][st]+a[nx][ny];
pre[nx][ny][st]={p.fi,p.se,st};
if(!vis[nx][ny])
{
vis[nx][ny]=1;
q.push(mp(nx,ny));
}
}
}
}
}
}
void dfs(int x,int y,int st)
{
vis[x][y]=1;
Pre p=pre[x][y][st];
if(!p.x)return ;
dfs(p.x,p.y,p.st);
if(x==p.x&&y==p.y)
dfs(p.x,p.y,st-p.st);
}
int main()
{
int cnt=0,ansx=-1,ansy;
scanf("%d%d",&n,&m);
memset(f,inf,sizeof f);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
if(!a[i][j])
{
f[i][j][(1<<cnt)]=0;cnt++;
if(ansx==-1)ansx=i,ansy=j;
}
}
}
for(int st=0;st<(1<<cnt);st++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int s=st;s;s=(s-1)&st)
{
if(f[i][j][s]+f[i][j][st-s]-a[i][j]<f[i][j][st])
{
f[i][j][st]=f[i][j][s]+f[i][j][st-s]-a[i][j];
pre[i][j][st]={i,j,s};
}
}
if(f[i][j][st]<inf)q.push(mp(i,j)),vis[i][j]=1;
}
}
spfa(st);
}
printf("%d\n",f[ansx][ansy][(1<<cnt)-1]);
memset(vis,0,sizeof vis);
dfs(ansx,ansy,(1<<cnt)-1);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(!a[i][j])putchar('x');
else putchar(vis[i][j]?'o':'_');
}
puts("");
}
return 0;
}
/*********************** ***********************/

dij松弛(432 ms):

/**************************************************************
Problem: 2595
User: walfy
Language: C++
Result: Accepted
Time:432 ms
Memory:7756 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a, b) ((a)>(b)?(a):(b))
#define Min(a, b) ((a)<(b)?(a):(b))
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;} using namespace std; const double g=10.0,eps=1e-12;
const int N=10+10,maxn=(1<<10)+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct Pre{
int x,y,st;
}pre[N][N][maxn];
int f[N][N][maxn],n,m,a[N][N];
bool vis[N][N];
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
int state;
struct node{
int x,y;
bool operator <(const node&rhs)const{
return f[x][y][state]<f[rhs.x][rhs.y][state];
}
};
priority_queue<node>q;
void dij(int st)
{
while(!q.empty())
{
node p=q.top();q.pop();
for(int i=0;i<4;i++)
{
int nx=p.x+dx[i],ny=p.y+dy[i];
if(1<=nx&&nx<=n&&1<=ny&&ny<=m)
{
if(f[p.x][p.y][st]+a[nx][ny]<f[nx][ny][st])
{
f[nx][ny][st]=f[p.x][p.y][st]+a[nx][ny];
pre[nx][ny][st]={p.x,p.y,st};
q.push({nx,ny});
}
}
}
}
}
void dfs(int x,int y,int st)
{
vis[x][y]=1;
Pre p=pre[x][y][st];
if(!p.x)return ;
dfs(p.x,p.y,p.st);
if(x==p.x&&y==p.y)
dfs(p.x,p.y,st-p.st);
}
int main()
{ int cnt=0,ansx=-1,ansy;
scanf("%d%d",&n,&m);
memset(f,inf,sizeof f);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
if(!a[i][j])
{
f[i][j][(1<<cnt)]=0;cnt++;
if(ansx==-1)ansx=i,ansy=j;
}
}
}
for(int st=0;st<(1<<cnt);st++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int s=st;s;s=(s-1)&st)
{
if(f[i][j][s]+f[i][j][st-s]-a[i][j]<f[i][j][st])
{
f[i][j][st]=f[i][j][s]+f[i][j][st-s]-a[i][j];
pre[i][j][st]={i,j,s};
}
}
if(f[i][j][st]<inf)q.push({i,j});
}
}
state=st;
dij(st);
}
printf("%d\n",f[ansx][ansy][(1<<cnt)-1]);
memset(vis,0,sizeof vis);
dfs(ansx,ansy,(1<<cnt)-1);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(!a[i][j])putchar('x');
else putchar(vis[i][j]?'o':'_');
}
puts("");
}
return 0;
}
/*********************** ***********************/

bzoj2595: [Wc2008]游览计划 斯坦纳树的更多相关文章

  1. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  2. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  3. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  4. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  5. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  6. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

  9. BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*

    BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...

随机推荐

  1. python环境安装selenium和手动下载安装selenium的方法

    方法1:cmd环境下,用pip install selenium 可能会很慢 方法2:下载selenium安装包手动安装 下载地址:https://pypi.org/project/selenium/ ...

  2. 最新版Intellij IDEA插件JRebel 7.0.7官方免费激活

    本文转自:http://blog.csdn.net/u012283609/article/details/70213307 开场语 有时候真实比小说更加荒诞,因为虚构是在一定逻辑下进行的,而现实往往毫 ...

  3. Chrome 性能监测

    前端性能优化一直是前端工作中必不可少的一部分,但是我们如何知道哪些部分的性能有优化的空间呢?此时,Chrome 性能监测就派上用场了. 正所谓:知己知彼,百战百胜,只有确定了性能瓶颈,才能有条不紊地进 ...

  4. 计算概论(A)/基础编程练习1(8题)/5:鸡兔同笼

    #include<stdio.h> int main() { // 鸡兔同笼中脚的总数:a < 32768 int a; scanf("%d", &a); ...

  5. 贪婪算法(Greedy Algorithm)

    Greedy Algorithm <数据结构与算法--C语言描述> 图论涉及的三个贪婪算法 Dijkstra 算法 Prim 算法 Kruskal 算法 Greedy 经典问题:coin ...

  6. 在wamp 2.0环境下面安装Zend Optimizer的方法

    原文链接:http://blog.sina.com.cn/s/blog_8dc13ec50101pbat.html 我是用WAMP来做PHP的服务器,进行本机测试和开发PHP项目. wamp环境是刚刚 ...

  7. MySQL命令行导出、导入数据库,备份数据库表

    MySQL导出数据库/数据表 1.首先,将你MySQL安装目录,例如C:\Program Files\MySQL\MySQL Server 5.7\bin添加到你的系统环境变量PATH中: 2.导出数 ...

  8. Luogu 2671 求和 NOIP2015T3

    题目链接 题解 20pts $O(n^3)$枚举$x,y,z$,根据题目要求判断 40pts $O(n^2)$枚举$x,z$,需要满足$x,z$奇偶相同 20~40pts的代码我都没有写过...就不贴 ...

  9. [Java] - MySQL数据库的时间设置问题.

    之前有朋友做的项目时间格式设置为String,我感觉很不好,随后自己试了试. 首先在设置数据库类型时,选择的是timestamp, 而Java的实体中设置时间的属性类型为Date, (java.uti ...

  10. 【TCP/IP详解 卷一:协议】第二十二章 TCP的坚持定时器

    这两章来到了TCP的定时器部分,在 TCP的超时与重传 和 TCP的三握四挥 我们介绍了 TCP的重传定时器 和 TCP的2MSL定时器. 本随笔介绍 防止返回ACK丢失的死锁情况 的 坚持定时器 和 ...