排列组合问题

之前没有学过隔板法,随便学习了一下

其实挺好理解的

附上题解:

先只考虑一种球:
因为有n个盒子每个盒子可以放任意多球,还可以空出来任意多球。所以可以考虑为n+1个盒子,最后一个盒子里面是题中没放的球。
由于盒子可以空出来,所以将隔板与球一起排列 即在隔板和球组成的n+a列中 选出任意a个位置放隔板的话,就可以实现题目要求的效果!(0个或任意多个)。
两种球所以C(n+a,a)*C(n+b,b)。

之后还需要注意精度问题

一直不是很注意这种事情,mark

最后一个点需要用到 unsigned long long

附上丑丑的代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int n,m,a,b;
double sum1,sum2;
unsigned long long c;
int main(){
scanf("%d%d%d",&n,&a,&b);
sum1=1;
for(int i=1+n;i<=a+n;i++){
sum1=(sum1*i)/(i-n);
}
sum2=1;
for(int i=n+1;i<=b+n;i++){
sum2=(sum2*i)/(i-n);
}
c=sum1*sum2;
cout<<c;
return 0;
}

哦...顺便提一下,自己之前写排列组合的时候,有时候会脑抽把它看成分子分母的乘积再相除

= =发现有bug...勿闹

vijos1060 隔板法的更多相关文章

  1. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  2. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  3. How do you add? UVA - 10943(组合数的隔板法!!)

    题意: 把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法? 隔板法...不会的可以买一本高中数学知识清单...给高中班主任打个广告.... 隔板法分两种...一种是不存在空集 = C(n- ...

  4. 51Nod 1509 加长棒(隔板法)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1509 思路: 直接去解可行的方法有点麻烦,所以应该用总的方法去减去不可行 ...

  5. uva10943(隔板法)

    很裸的隔板法. 引用一下维基上对隔板法的解释: 现在有10个球,要放进3个盒子里 ●●●●●●●●●● 隔2个板子,把10个球被隔开成3个部份 ●|●|●●●●●●●●.●|●●|●●●●●●●.●| ...

  6. hdu6397 Character Encoding 隔板法+容斥原理+线性逆元方程

    题目传送门 题意:给出n,m,k,用m个0到n-1的数字凑出k,问方案数,mod一个值. 题目思路: 首先如果去掉数字范围的限制,那么就是隔板法,先复习一下隔板法. ①k个相同的小球放入m个不同的盒子 ...

  7. HDU4045 Machine scheduling —— 隔板法 + 第二类斯特林数

    题目链接:https://vjudge.net/problem/HDU-4045 Machine scheduling Time Limit: 5000/2000 MS (Java/Others)   ...

  8. 逆元 组合A(n,m) C(n,m)递推 隔板法

    求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...

  9. light oj 1102 - Problem Makes Problem组合数学(隔板法)

    1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...

随机推荐

  1. [ACM] hdu 1285 确定比赛 (拓扑排序)

    确定比赛 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  2. MVC 编程模型及其变种

    MVC 编程模型及其变种 MVC全称是Model View Controller, 这是一个模型(model)-查看(view)-调节器(controller)缩写,这是通过通用的编程模型非.MVC当 ...

  3. crm使用soap删除实体

    //C# 代码: //DeleteEntityRequest request = new DeleteEntityRequest(); //request.LogicalName = "ne ...

  4. 关于Promise的一个案例

    题目:红灯三秒亮一次,绿灯一秒亮一次,黄灯2秒亮一次:如何让三个灯不断交替重复亮灯?(用Promise实现) 解答思路一: function red(){ console.log('red'); } ...

  5. Winform中node.Text重命名时窗口无响应假死的解决方法

    用户控件中有一个树,窗体使用了这个控件,但是重命名时执行node.text="XXXX" 执行了很长时间,大约9s,在此期间winform界面假死,尝试过多线程异步委托的方式来操作 ...

  6. lambda 表达式 自定义查询

    遇到 这样的 问题 常用 EF . 实现  like 用 Contains("asd")  搞定 他生成的是 %asd% . 如果 我希望 生成  asd%,怎么搞呢? Start ...

  7. SSAS系列——【06】多维数据(创建Cube)

    原文:SSAS系列--[06]多维数据(创建Cube) 1.文件类型说明 项目定义文件 (.dwproj).项目用户设置 (.dwproj.user).数据源文件 (.ds).数据源视图文件 (.ds ...

  8. Unix/Linux环境C编程新手教程(41) C语言库函数的文件操作具体解释

     上一篇博客我们解说了怎样使用Linux提供的文件操作函数,本文主要解说使用C语言提供的文件操作的库函数. 1.函数介绍 fopen(打开文件) 相关函数 open,fclose 表头文件 #in ...

  9. 网站静态化处理—web前端优化—中(12)

    网站静态化处理—web前端优化—中(12) Web前端很多优化原则都是从如何提升网络通讯效率的角度提出的,但是这些原则使用的时候还是有很多陷阱在里面,如果我们不能深入理解这些优化原则背后所隐藏的技术原 ...

  10. C语言学习-数据结构 - 倒插法顺序表

    // test20161106.cpp : Defines the entry point for the console application. // #include "stdafx. ...