bzoj [SDOI2014]数表 莫比乌斯反演 BIT

链接

bzoj

luogu

loj

思路

\[\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[gcd(i,j)]<=a]
\]

\[f[]可以O(n)预处理出来
\]

\[\sum\limits_{k=1}^{n}f[k]*\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}[gcd(i,j)==k]
\]

\[\sum\limits_{k=1}^{n}f[k]*\sum\limits_{i=1}^{\frac{n}{k}}{\frac{n}{ki}}{\frac{m}{ki}}\mu(i)
\]

\[\sum\limits_{i=1}^{n}f[i]*\sum\limits_{k|d}{\frac{n}{d}\frac{m}{d}}\mu(\frac{d}{i})
\]

d替换k*i

\[\sum\limits_{d=1}^{n} \frac{n}{d} \frac{m}{d} \sum\limits_{k|d} \mu(\frac{d}{k})f(k)
\]

\[\sum\limits_{d=1}^{n} \frac{n}{d} \frac{m}{d} g(d)
\]

\[g(d)=\sum\limits_{k|d} \mu(\frac{d}{k})f(k)
\]

询问按照a排序,每次加入f(k)时候影响的只是能k|d的g(d)

每次修改就是\(O(\sqrt{n}logn)\)

查询也是一样,

总的就是\(O(T\sqrt{n}logn)\)

注意,ll+取模的话,loj会超时,用int的自然溢出就快了三倍(300ms),是int,不是unsigned int。

其他

线性筛约数和

\[x=p_{1}^{w_1}p_{2}^{w_2}…p_{k}^{w_k}
\]

那么

\[SD(x)=约数和=(1+p_1^1+p_1^2+…+p_1^{w_1})(1+p_2^1+p_2^2+…+p_2^{w_2})(1+p_k^1+p_k^2+…+p_k^{w_k})
\]

0x00 是个素数

显然\(SD(pri)=pri+1\)

0x01 两两互质

是个积性函数

因为x,y两两互质,所以他们质因子互不相交,所以显然脑补公式

\[SD(x*y)=SD(x)*SD(y)(gcd(x,y)==1)
\]

0x02 两两不互质(i%pri[j]!=0)

再开个数组tmp,记录最小质因子因子的贡献\((1+p_1^1+p_1^2+…+p_1^{w_1})\)

因为pri[j]是他的最小质因子(因为这是线性筛)

我们之前求出的i的

\[SD(i)=(1+p_1^1+p_1^2+…+p_1^{w_1})(1+p_2^1+p_2^2+…+p_2^{w_2})(1+p_k^1+p_k^2+…+p_k^{w_k})
\]

现在的\(i*pri[j]\)的SD显然就是

\[SD(i*pri[j])=(1+p_1^1+p_1^2+…+p_1^{w_1}+p_1^{w_1+1})(1+p_2^1+p_2^2+…+p_2^{w_2})(1+p_k^1+p_k^2+…+p_k^{w_k})
\]

改变的只有最小因子的贡献,tmp的作用就来了

tmp[i]我们已经求出来了,那么

\[tmp[i*pri[j]]=tmp[i]*pri[j]+1(这是个等差数列)
\]

\[SD[i*pri[j]]=SD[i]/tmp[i]*tmp[i*pri[j]]
\]

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 6;
int read() {
int x = 0, f = 1; char s = getchar();
for (; s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1;
for (; s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int pri[N], tot, vis[N], mu[N];
int f[N], tmp[N];
struct node {
int n, m, a, id;
int ans;
bool operator < (const node &b) const {
return a < b.a;
}
} Q[N];
bool cmp(node a, node b) {
return a.id < b.id;
}
pair<int,int> F[N];
void Euler(int limit) {
f[1] = tmp[1] = mu[1] = 1;
for (int i = 2; i <= limit; ++i) {
if (!vis[i]) {
mu[i] = -1;
pri[++tot] = i;
f[i] = i + 1;
tmp[i] = i + 1;
}
for (int j = 1; j <= tot && i * pri[j] <= limit; ++j) {
vis[i * pri[j]] = 1;
if (i % pri[j] == 0) {
tmp[i * pri[j]] = tmp[i] * pri[j] + 1;
f[i * pri[j]] = f[i] / tmp[i] * tmp[i * pri[j]];
mu[i * pri[j]] = 0;
break;
}
mu[i * pri[j]] = -mu[i];
f[i * pri[j]] = f[i] * f[pri[j]];
tmp[i * pri[j]] = pri[j] + 1;
}
}
for (int i = 1; i <= limit; ++i) {
F[i].first = f[i], F[i].second = i;
}
sort(F + 1, F + 1 + limit);
}
namespace BIT {
int sum[N];
int lowbit(int x) {return x & (-x);}
void add(int x, int ad) {
for (int i = x; i <= 100000; i += lowbit(i)) sum[i] = (sum[i] + ad);
}
int query(int x) {
int ans = 0;
for (int i = x; i >= 1; i -= lowbit(i)) ans = (ans + sum[i]);
return ans;
}
}
int main() {
Euler(100000);
int T = read();
for (int i = 1; i <= T; ++i) {
Q[i].n = read(),Q[i].m = read(),Q[i].a = read(), Q[i].id = i;
}
sort(Q + 1, Q + 1 + T);
int now = 0;
for (int i = 1; i <= T; ++i) {
while (now + 1 <= 100000 && Q[i].a >= F[now + 1].first) {
now++;
for (int j = F[now].second; j <= 100000; j += F[now].second) {
BIT::add(j, mu[j / F[now].second] * F[now].first);
}
}
int ans = 0;
if (Q[i].n > Q[i].m) swap(Q[i].n, Q[i].m);
for (int l = 1, r; l <= Q[i].n; l = r + 1) {
r = min(Q[i].n / (Q[i].n / l), Q[i].m / (Q[i].m / l));
ans += 1LL * (Q[i].n / l) * (Q[i].m / l) * (BIT::query(r) - BIT::query(l - 1));
}
Q[i].ans = ans;
}
sort(Q + 1, Q + 1 + T, cmp);
for (int i = 1; i <= T; ++i) printf("%u\n", Q[i].ans < 0 ? Q[i].ans + 2147483648 : Q[i].ans);
return 0;
}

bzoj [SDOI2014]数表 莫比乌斯反演 BIT的更多相关文章

  1. BZOJ[Sdoi2014]数表 莫比乌斯反演

    [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2383  Solved: 1229[Submit][Status][Disc ...

  2. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  3. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  4. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  5. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  6. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  7. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  8. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  9. bzoj 3529 数表 莫比乌斯反演+树状数组

    题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

随机推荐

  1. Kubernetes增强型调度器Volcano算法分析【华为云技术分享】

    [摘要] Volcano 是基于 Kubernetes 的批处理系统,源自于华为云开源出来的.Volcano 方便 AI.大数据.基因.渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎,高性能异 ...

  2. ifame内嵌页面全屏完美展示

    <body style= marginwidth= marginheight= width='100%' height='100%' allowfullscreen='true' src='ht ...

  3. PYTHON的ASCII码转换

    首先,我们要知道ASCII的ord 这个变值,附上代码: c=input("请输入一个字符:") print (c+"的ASCII码为 ".ord(c)) #用 ...

  4. 03 .NET CORE 2.2 使用OCELOT -- Docker中的Consul

    部署consul-docker镜像 先搜索consul的docker镜像 docker search consul 然后选择了第一个,也就是官方镜像 下载镜像 docker pull consul 然 ...

  5. Mac 下安装 jdk

    1.安装jdk 我们是需要java环境的- 到oracle官网下载se: Java SE Development Kit 8 Downloads https://www.oracle.com/tech ...

  6. nginx配置多个TLS证书,以及TLS SNI简介

    背景 原来申请的正式域名备案通过,TLS证书也申请了.之前使用的临时域名和证书作为测试环境使用.于是要在单个ECS主机上配置nginx多个证书和多个域名. 实践 nginx部署多个TLS证书很简单,在 ...

  7. 一入 Java 深似海【目录】-----------------------------------------【目录】

    [目录] 一.计算机相关知识 1. 2. 3. 二.Java 基础语法 1.Java 语言概述 2.数据类型 & 变量与常量 & 注释 3.运算符 4.流程控制语句 之 顺序结构 5. ...

  8. 高性能的编程IO与NIO阻塞分析

    1.什么是阻塞,什么是非阻塞? 阻塞:结果返回之前,线程一直被挂起. 非阻塞:做一件事,尝试去做 2.传统IO模型 socket编程:

  9. Cloud Alert 实现告警智能降噪,成功规避告警风暴

    # 前言 睿象云前段时间发表了一篇[< Zabbix 实现电话.邮件.微信告警通知的实践分享>](https://www.toutiao.com/i6734876723126469127/ ...

  10. using 中写 return 一样会释放using 中对象 但是会在外面定义一个一样的对象 赋值后 释放 最后 return 外面定义的那个对象

    static DataTable getDataTable() { ")) { SqlCommand com = new SqlCommand("", con); Sql ...