Acwing P277 饼干 题解
每日一题 day20 打卡
Analysis
线型动态规划
读入每个人的贪婪度之后,对其按照从大到小的顺序排序,定义状态f[i][j]为前i个人(排序后)分j个饼干的答案,那么答案为f[n][m],考虑状态转移方程。
1、若给第i个人的饼干数大于1 ,那么我们将这i个人的饼干数都减1(总共减n),他们的怨气值是不会改变的,因而这种情况下,f[i][j]=f[i][j-i].
2、若给第i个人的饼干数等于1,那么我们枚举一个k(0≤k<i),表示从k之后一直到i所有的人的饼干数都是1,那么f[i][j]=f[k][j-(i-k)]+k*∑g[c[p]] (k<p<=i).
我们先预处理出g数组的前缀和,即可实现O(n)的转移。
综上,我们在两种决策中取最优即可。另外,本题要求输出方案,我们只需在状态转移时记录每个状态的前驱即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define maxn 30+10
#define maxm 5000+10
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int n,m;
int g[maxn],num[maxn],sum[maxn],ans[maxn];
int a[maxn][maxm],b[maxn][maxm],dp[maxn][maxm];
inline bool cmp(int x,int y)
{
return g[x]>g[y];
}
inline void fig(int x,int y)
{
if(!x) return;
fig(a[x][y],b[x][y]);
if(a[x][y]==x)
{
for(int i=;i<=x;i++) ans[num[i]]++;
}
}
signed main()
{
memset(dp,,sizeof(dp));
n=read();m=read();
for(int i=;i<=n;i++)
{
g[i]=read();
num[i]=i;
}
sort(num+,num+n+,cmp);
for(int i=;i<=n;i++) ans[num[i]]=;
for(int i=;i<=n;i++) sum[i]=sum[i-]+g[num[i]];
dp[][]=;
for(int i=;i<=n;i++)
{
for(int j=i;j<=m;j++)
{
dp[i][j]=dp[i][j-i];
a[i][j]=i;
b[i][j]=j-i;
for(int k=;k<i;k++)
{
if(dp[i][j]>dp[k][j-(i-k)]+k*(sum[i]-sum[k]))
{
dp[i][j]=dp[k][j-(i-k)]+k*(sum[i]-sum[k]);
a[i][j]=k;
b[i][j]=j-(i-k);
}
}
}
}
write(dp[n][m]);
printf("\n");
fig(n,m);
for(int i=;i<=n;i++)
{
write(ans[i]);
printf(" ");
}
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
Acwing P277 饼干 题解的更多相关文章
- Acwing P283 多边形 题解
Analysis 总体来说是一个区间DP 此题首先是一个环,要你进行删边操作,剩下的在经过运算得到一个最大值 注意事项: 1.删去一条边,剩下的构成一条线,相当于求此的最大值,经典区间DP该有的样子: ...
- Acwing P284 金字塔 题解
Analysis 一棵树的每颗子树都对应着这棵树 DFS 序的一个区间.本题的序列虽然不是 DFS 序列,但也有该性质.本题中,我们以区间长度作为阶段, F[ l , r ] 表示序列 s[ l ~ ...
- AcWing P379 捉迷藏 题解
Analysis 这道题因为我们要给能到达的两个点都连上,又由于n<=200,所以我们可以用n³的传递闭包来建边,再用匈牙利算法来求二分图最大点独立集. #include<iostream ...
- AcWing 走廊泼水节 题解
这道题大致题意就是让一棵树任意两点有连边(也就是完全图),但是补完后最小生成树是一开始的那棵树,问最小加的边权之和是多少. 了解题意后,我们可以想到用Kruskal(废话),当每两个集合合并的时候,除 ...
- csp-s 考前刷题记录
洛谷 P2615 神奇的幻方 洛谷 P2678 跳石头 洛谷 P1226 [模板]快速幂||取余运算 洛谷 P2661 信息传递 LOJ P10147 石子合并 LOJ P10148 能量项链 LOJ ...
- AcWing 785.快速排序
AcWing 785.快速排序题解 题目描述 给定你一个长度为n的整数数列. 请你使用快速排序对这个数列按照从小到大进行排序. 并将排好序的数列按顺序输出. 输入格式 输入共两行,第一行包含整数 n. ...
- Codeforces Round #530 (Div. 2) F 线段树 + 树形dp(自下往上)
https://codeforces.com/contest/1099/problem/F 题意 一颗n个节点的树上,每个点都有\(x[i]\)个饼干,然后在i节点上吃一个饼干的时间是\(t[i]\) ...
- 【题解】AcWing 110. 防晒(普及题)
[题解]AcWing 110. 防晒(普及题) AcWing 110. 防晒 你没有用过的全新OJ 嘿嘿水水题. 题目就是一维坐标轴上给定多个线段,给定多个点,点在线段上造成贡献,点可以重复,问最大贡 ...
- Acwing P288 休息时间 题解
Analysis 首先假设一天的第N小时与后一天的第一个小时不相连, 这种情况下DP转移比较好想 dp[i][j][0/1]dp[i][j][0/1]表示 考虑一天的前i个小时,已经休息了j小时,且第 ...
随机推荐
- 使用Python快速实现简单的人脸检测
最近有个比较要好的朋友问我能不能从监控视频里识别到从监控跟前经过的指定的人.因为他们单位的监控室经常要花大量的人力跟时间去找某个人在哪个位置出现过的证据.听起来像是一份比较有挑战性的任务,就答应他试试 ...
- Ubuntu19.04 Help
Ubuntu Dock 为应用程序启用最小化操作,立即生效. $ gsettings set org.gnome.shell.extensions.dash-to-dock click-action ...
- 【scratch3.0教程】1.2 下载安装scratch
第2课 下载安装Scratch 1 . 什么是Scratch? Scratch将程序语言设计成一块块积木,你只要用拖拉的方式,将程序积木 ...
- jstack的使用:死锁问题实战
- Node模块化
Node.js是一个能够在服务器端运行JavaScript的开放源代码.跨平台JavaScript运行环境.Node是对ES标准一个实现,也是一个JS引擎.与传统服务器不同是Node的服务器是单线程的 ...
- Centos 7 添加开机启动
1.添加启动服务 添加docker开机启动服务 [root@localhost ~]# systemctl enable docker.serviceCreated symlink from /etc ...
- springboot笔记07——整合MyBatis
前言 Springboot 整合 MyBatis 有两种方式,分别是:"全注解版" 和 "注解.xml混合版". 创建项目 创建Springboot项目,选择依 ...
- 谷歌浏览器解决ajax跨域问题
在用mui和H5+做混合开发,会利用HBuildx去真机调试,可真机调试总有问题所在,懂得人自然懂,而我们直接打开页面显示的只有一个静态的页面,是获取不到数据的在这里我想说的不是代码中利用jsonp, ...
- 查询本地ip以及ip地址库查询
四种方法查询本地ip from urllib2 import urlopen from json import load my_ip = urlopen('http://ip.42.pl/raw'). ...
- 【iOS】去除字符串首尾空格或某字符
在iOS的实际开发中,常会出现需要去除空格的情况,总结有三种情况: 去除字符串首尾连续字符(如空格): 去除字符串首部连续字符(如空格): 去除字符串尾部连续字符(如空格): 去除字符串首尾连续字符( ...