一个经典问题


\[
\sum_{k=1}^n\mathbb{lcm}(k,n)
\]

一般的做法是使用\(\varphi(n)\)函数。

不经典的做法

\[
\begin{align*}
\sum_{k=1}^n\mathbb{lcm}(k,n)
&=\sum_{k=1}^n\frac{nk}{\gcd(n,k)}\tag{gcd与lcm的关系}\\
&=\sum_{d|n}\sum_{k=1}^{n/d}\frac{ndk}{d}[\gcd(n,dk)=d]\tag{枚举gcd(n,k)}\\
&=\sum_{d|n}\sum_{k=1}^{n/d}nk[\gcd(\frac{n}{d},k)=1]\tag{同消去d}\\
&=n\sum_{d|n}\sum_{k=1}^dk[\gcd(d,k)=1]\tag{用d代替n/d}\\
&=n\sum_{d|n}\sum_{k=1}^dk\sum_{j|gcd(d,k)}\mu(j)\tag{莫比乌斯函数的性质}\\
&=n\sum_{j|n}\mu(j)\sum_{d|n/j}\sum_{k=1}^djk\tag{交换求和次序}\\
&=n\sum_{j|n}\mu(j)j\sum_{d|n/j}\frac{d(d+1)}{2}\tag{等差数列求和公式}\\
&=\frac{n}{2}\left(\sum_{j|n}\mu(j)j\sum_{d|n/j}d^2+\sum_{j|n}\mu(j)j\sum_{d|n/j}d\right)\tag{拆分}\\
&=\frac{n}{2}(f(n)+g(n))\tag{设元}\\
\end{align*}
\]

计算\(f(n)\)

考虑
\[
f(n)=\sum_{j|n}\mu(j)j\sum_{d|n/j}d^2
\]
易证\(\mu(j)j\)和\(\sum\limits_{d|n}d^2\)都是积性函数。

则\(f(n)\)为积性函数\(\mu(j)j\)和\(\sum\limits_{d|n}d^2\)的狄利克雷卷积,可得\(f(n)\)为积性函数。

则\(f(n)\)可用欧拉筛法求出如下:
\[
\begin{align*}
f(p^k)
&=\mu(1)\sum_{d=0}^k(p^d)^2+\mu(p)p\sum_{d=0}^{k-1}(p^d)^2\tag{莫比乌斯函数的性质}\\
&=\sum_{d=0}^kp^{2d}-\sum_{d=0}^{k-1}p^{2d+1}\tag{整理}\\
&=\sum_{d=0}^{2k}(-p)^k\tag{合并}\\
&=\frac{1-(-p)^{2k+1}}{1+p}\tag{等比数列求和公式}\\
&=\frac{1+p^{2k+1}}{1+p}\tag{整理}\\
\end{align*}
\]

再维护一个最小质因数的次数\(p^k\)即可。

计算\(g(n)\)

考虑
\[
g(n)=\sum_{j|n}\mu(j)j\sum_{d|n/j}d
\]
同上,可得\(g(n)\)为积性函数。

则\(g(n)\)可

用欧拉筛法求出如下:
\[
\begin{align*}
g(p^k)
&=\mu(1)\sum_{d=0}^kj^d+\mu(p)p\sum_{d=0}^{k-1}j^d\tag{莫比乌斯函数的性质}\\
&=\sum_{d=0}^kj^d-\sum_{d=1}^{k}j^d\tag{整理}\\
&=1\tag{展开}\\
\end{align*}
\]
我们可以惊讶地发现\(g(n)\)恒等于\(1\)!

总结

则我们可以每次\(O(1)\)地求出
\[
\sum_{k=1}^n\mathbb{lcm}(k,n)=\frac{n}{2}(f(n)+1)
\]

莫比乌斯反演求LCM的另一种做法的更多相关文章

  1. bzoj 2154 莫比乌斯反演求lcm的和

    题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...

  2. (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)

    莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...

  3. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  4. ZOJ 3435 Ideal Puzzle Bobble 莫比乌斯反演

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下 ...

  5. 【JZOJ3623】【SDOI2014】数表(table) 树状数组+离线+莫比乌斯反演

    题面 100 \[ Ans=\sum_{i=1}^n\sum_{j=1}^mg(gcd(i,j)) \] 其中, \[ g(d)=\sum_{i|d}i \] 我们注意到\(gcd(i,j)\)最多有 ...

  6. 树上莫比乌斯反演+分层图并查集——cf990G

    /* 树上莫比乌斯反演 求树上 满足 d|gcd(au,av) gcd(au,av)的对数f(d) 如何求: 建立200000层新图,即对于每个数建立一个新图 在加边时,给gcd(au,av)的约数层 ...

  7. 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题

    名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...

  8. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  9. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

随机推荐

  1. PHP Socket 编程之9个主要函数的使用之测试案例

    php的socket编程算是比较难以理解的东西吧,不过,我们只要理解socket几个函数之间的关系,以及它们所扮演的角色,那么理解起来应该不是很难了,在笔者看来,socket编程,其实就是建立一个网络 ...

  2. 复旦高等代数 I(15级)每周一题

    [问题2015A01]  证明: 第三类分块初等变换是若干个第三类初等变换的复合. 特别地, 第三类分块初等变换不改变行列式的值. [问题2015A02]  设 $n\,(n\geq 2)$ 阶方阵 ...

  3. SDOI2015做题记录

    由于我懒,并且这里面除了D2T3恶心以外都不难写,所以很多代码都没写-- 排序 对于某一个合法的操作序列(操作序列定义为每次交换的两组数),可以随意交换顺序,仍然合法.所以对于一个操作集合,答案就加\ ...

  4. Complete the Projects

    F1. Complete the Projects (easy version) F2. Complete the Projects (hard version) 参考:Complete the Pr ...

  5. mysql group by 报错 ,only_full_group_by 三种解决方案

    报错信息  Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'data ...

  6. 《sicp》八皇后谜题

    <sicp>八皇后谜题 书中练习2.42.八皇后谜题问的是如何将八个皇后摆在国际象棋棋盘上,使得任意一个皇后都不能攻击另一个皇后(也就是说任意两个皇后都不能在同一行,同一列和同一对角线上) ...

  7. Thingsboard Docker关闭后重启服务创建network出错

    因为个人想验证一下thingsboard的数据是否是保存在postgres中,就将postgres容器停止,后想重启则无法重启 我干脆将整个系统删除后重新再来一次,在试的时候发现无法重新创建容器 Cr ...

  8. [转] Filezilla server设置指南及中文乱码、登录欢迎语问题解决

    一.filezilla server 安装指南:FileZilla是一款免费而且开源的FTP工具.包括FileZilla Client,FileZilla Server两个版本.FileZilla S ...

  9. 狼人杀面杀APP(FGUI教程)

    本教程为FairyGUI进阶教程,这是一套完整的面杀桌游APP.游戏不仅有发放随机身份的功能,还涉及10个页面的切换与各页面不同状态(最多达9种状态)的切换,众多复杂UI的交互,多语言切换,3D粒子在 ...

  10. python gtk 环境

    为Python添加GTK+库:pygtk(windows下安装pygtk) 一.下载需要的文件 昨天晚上就是所需的文件没有找全,我还以为只需要一个pygtk就够了. 1.下载pygtk需要的文件 到p ...