link

Reidentification by Relative Distance Comparison

Challenge:

  • large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion
  • 之前的大部分算法寻找独特的视觉特征。但寻找在数据规模大、现实条件不同的数据集中能够保持鲁棒性的视觉特征仍然十分困难。
  • 在不同条件下,有些特征比其他特征更重要,更稳定,使用l1-Norm等普遍采用的标准的距离评估方法并不合适,因为它们会等权重地对待所有特征。

In order to find a correc match Given a query image of a person:

  • First, a feature representation is computed from both the query and each of the gallery images.
  • Second, the distance between each pair of potential matches is measured

Solution(part 1):

  • given a set of features extracted from each person image, we seek to quantify and differentiate these features by learning the optimal distance measure that is most likely to give correct matches.
  • In essence, images of each person in a training set form a class.
  • This learning problem can be framed as a distance learning problem which always searches for a distance that minimizes intraclass distances while maximizing interclass distances.

Question:

  • the person reidentification problem has four characteristics

    • The intraclass variation can be large and, more importantly, can vary significantly for different classes
    • The interclass variation also varies drastically across different pairs of classes and there are often severe overlaps between classes in a feature space
    • In order to capture the large intra and intervariations, the number of classes is necessarily large
    • Annotating a large number of matched people across camera views is not only tedious, but also inherently limited in its usefulness
  • the data are inherently undersampled for building a representative class distribution

  • a learning model could easily be overfitted and/or be intractable if it is learned by minimizing intraclass distance and maximizing interclass distance simultaneously by brute-force

Solution(part 2):

  • formulate the problem as a relative distance comparison (RDC) problem
  • the model aims to learn an optimal distance in the sense that for a given query image, the true match is desired to be ranked higher than the wrong matches among the gallery image set
  • not easily biased by large variations across many undersampled classes as it aims to seek an optimized individual comparison between any two data points rather than comparison among data distribution boundaries or among clusters of data
  • Furthermore, in order to alleviate the large space complexity (memory usage cost) and the local optimum learning problem due to the proposed iterative algorithm for solving high-order nonlinear optimization criterion, we develop an ensemble RDC in this work

Details:

Proposed Relative Distance Comparison Learning

给出训练集\(Z={\{(\mathbf{z_i},y_i)\}}^N_{i=1}\),其中\(\mathbf{z_i}\)是表示一个视图中一个人的多维特征向量,\(y_i\)是对呀的类标签(人的ID)。

定义集合\(O_i=\{O_i = (x^p_i, x^n_i)\}\),其中\(x^p_i\)为两个相同类别样本的差异向量,\(x^n_i\)为两个不同类别样本的差异向量

\[ x=d(\mathbf{z,z'}),\quad \mathbf{z,z'} \in R^q\]

其中d是作用在矩阵每个元素上的差异函数。

给定\(O\),距离函数\(f\)以差异向量作为输入,通过相对距离比较的方式进行学习,从而使得

\[ f(x^p_i) < f(x^n_i)\]

为了描述这个优化目标,并且让它可以求导,令

\[C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)=\left(1+\exp \left\{f\left(\mathbf{x}_{i}^{p}\right)-f\left(\mathbf{x}_{i}^{n}\right)\right\}\right)^{-1}\]

假定the events of distance comparison between a relevant pair and a related irrelevant pair are independent,优化目标成为

\[\min _{f} r(f, O),\quad r(f, O)=-\log \left(\prod_{O_i} C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)\right)\]

令\(f\)为马氏距离,其中M为半正定矩阵。问题转化为学习M。
\[f(\mathbf{x})=\mathbf{x}^{T} \mathbf{M} \mathbf{x}, \quad \mathbf{M} \succeq 0\]

对矩阵M作特征分解,

\[\mathbf{M}=\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{T}=\mathbf{W} \mathbf{W}^{T}, \quad \mathbf{W}=\mathbf{A} \mathbf{\Lambda}^{\frac{1}{2}}\]

其中\(\mathbf{A}\)由正交特征向量构成,而\(\mathbf{\Lambda}\)由对应特征值构成

令\(\mathbf{W}=(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}, \ldots, \mathbf{w}_{L})\)

问题转化为

\[\min _{\mathbf{W}} r(\mathbf{W}, O), \text { s.t. } \quad \mathbf{w}_{i}^{T} \mathbf{w}_{j}=0, \forall i \neq j\]

\[
r(\mathbf{W}, O)=\sum_{O_{i}} \log \left(1+\exp \left\{\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{p}\right\|^{2}-\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{n}\right\|^{2}\right\}\right)
\]

上式即 relative distance comparisong for person reidentification

An Iterative Optimization Algorithm

  • 初值:

    • \(O_i=\{O_i = (x^p_i, x^n_i)\},\quad \epsilon \gt 0\)
    • \(\mathbf{w}_{0} \longleftarrow \mathbf{0}, \quad \tilde{\mathbf{w}}_{0} \longleftarrow \mathbf{0}\)
    • \(\mathbf{x}_{i}^{s, 0} \longleftarrow \mathbf{x}_{i}^{s}, s \in\{p, n\}, O^{0} \longleftarrow O\)
  • 第\(l\)次迭代:

    • 令优化目标中的项

    \[a_{i}^{l+1}=\exp \left\{\sum_{j=0}^{l}\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{p, j}\right\|^{2}-\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{n, j}\right\|^{2}\right\}\]

    其中\(\mathbf{x}_{i}^{p, l},\mathbf{x}_{i}^{n, l}\)为第\(l\)次迭代的差别向量,定义为

    \[\mathbf{x}_{i}^{s, \ell}=\mathbf{x}_{i}^{s, l-1}-\tilde{\mathbf{w}}_{l-1} \tilde{\mathbf{w}}_{l-1}^{T} \mathbf{x}_{i}^{s, l-1}, \quad s \in\{p, n\}, i=1, \ldots,|O|\]

    其中\(l \ge 1\)并且\(\tilde{\mathbf{w}}_{l-1} = \mathbf{w}_{l-1} / \|\mathbf{w}_{l-1}\|\)

    (个人理解,相当于一个动量)

    • 计算\(\mathbf{x}_{i}^{p, l+1},\mathbf{x}_{i}^{n, l+1}\),得到新的\(O^{l+1}\)

    梯度下降法最小化目标

    \[\mathbf{w}_{l+1}=\arg \min _{\mathbf{w}} r_{l+1}\left(\mathbf{w}, \mathbf{O}^{l+1}\right)\]

    其中

    \[r_{l+1}(\mathbf{w}, \mathbf{O}^{l+1})=\sum_{O_{i}^{l+1}} \log (1+a_{i}^{l+1} \exp \{\|\mathbf{w}^{T} \mathbf{x}_{i}^{p, l+1}\|^{2}-\|\mathbf{w}^{T} \mathbf{x}_{i}^{n, l+1}\|^{2}\})\]

    \(a^{l+1}_i\)的存在考虑上一次迭代(上一组数据)的影响

    注意到\(\mathbf{w}_{l-1}^{T} \mathbf{x}_{i}^{s, l}=0\),过早的迭代样本不会影响到下一次的\(w\)

  • 出口:

\[r_{l}\left(\mathbf{w}_{l}, O^{l}\right)-r_{l+1}\left(\mathbf{w}_{l+1}, O^{l+1}\right)<\varepsilon\]

ENSEMBLE LEARNING FOR LARGE SCALE COMPUTATION

Note for Reidentification by Relative Distance Comparison的更多相关文章

  1. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  2. PatentTips - Hamming distance comparison

    BACKGROUND INFORMATION In a typical data processing environment, data may be transmitted in multiple ...

  3. 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics

    摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...

  4. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  5. (转)Let’s make a DQN 系列

    Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...

  6. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  7. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  8. Latex中画出函数文件的调用关系拓扑图

    流程图,思维导图,拓扑图通常能把我们遇到的一些复杂的关系结构用图形的方式展现出来.在Latex中要想画这样的拓扑图,有一个很好用的绘图工具包 pgf/tikz . 1.pgf/tikz的安装:pgf/ ...

  9. ArcGIS Engine开发之旅04---ARCGIS接口详细说明

    原文:ArcGIS Engine开发之旅04---ARCGIS接口详细说明 ArcGIS接口详细说明... 1 1.      IField接口(esriGeoDatabase)... 2 2.    ...

随机推荐

  1. 【转】Webpack 快速上手(中)

    由于文章篇幅较长,为了更好的阅读体验,本文分为上.中.下三篇: 上篇介绍了什么是 webpack,为什么需要 webpack,webpack 的文件输入和输出 中篇介绍了 webpack 在输入和输出 ...

  2. NIO与网络编程系统化学习

    1.背景 数据在网络中传输,必然回遇到读写问题.... 2.比较NIO与IO 3.案例演示 3.1.缓冲区演示 package com.wfd360.nio; import org.junit.Tes ...

  3. Django 之 cookie & session

    Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不会直接影响后面 ...

  4. Zabbix4.0如何添加监控信息

    二.添加监控信息 监控Windows主机: 首先需要在Windows主机上安装好Zabbix agent,安装方法,见另一篇博客,https://www.cnblogs.com/opsprobe/p/ ...

  5. 前端重定向,index.html文件被浏览器缓存,导致整个应用都是旧的

    解决方法:https://github.com/ant-design/ant-design-pro/issues/1365#issuecomment-384496088

  6. sed 用法

    sed 用法 sed的其他用法如下: 1.删除行首空格 sed 's/^[ ]*//g' filename sed 's/^ *//g' filename sed 's/^[[:space:]]*// ...

  7. cmds系统数据库源端大表数据更新优化

    cmds系统数据库源端大表数据更新优化 以下脚本可以用于将表按照rowid范围分区,获得指定数目的rowid Extent区间(Group sets of rows in the table into ...

  8. 阶段性项目 ATM+购物车项目

    ATM + 购物车https://www.cnblogs.com/kermitjam/articles/10687180.html readme 内容前戏: 一个项目是如何从无到有的. 一 需求分析 ...

  9. You Can Customize Synthesized Instance Variable Names @property

    As mentioned earlier, the default behavior for a writeable property is to use an instance variable c ...

  10. bzoj1115&&POJ1704&&HDU4315——阶梯Nim

    BZOJ1115 题意:阶梯Nim游戏大意:每个阶梯上有一堆石子,两个人在阶梯上玩推石子游戏.每人可以将某堆的任意多石子向左推一阶,所有的石子都推到阶梯下了即算成功,即不能推的输. 分析:根据阶梯Ni ...