Note for Reidentification by Relative Distance Comparison
link
Reidentification by Relative Distance Comparison
Challenge:
- large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion
- 之前的大部分算法寻找独特的视觉特征。但寻找在数据规模大、现实条件不同的数据集中能够保持鲁棒性的视觉特征仍然十分困难。
- 在不同条件下,有些特征比其他特征更重要,更稳定,使用l1-Norm等普遍采用的标准的距离评估方法并不合适,因为它们会等权重地对待所有特征。
In order to find a correc match Given a query image of a person:
- First, a feature representation is computed from both the query and each of the gallery images.
- Second, the distance between each pair of potential matches is measured
Solution(part 1):
- given a set of features extracted from each person image, we seek to quantify and differentiate these features by learning the optimal distance measure that is most likely to give correct matches.
- In essence, images of each person in a training set form a class.
- This learning problem can be framed as a distance learning problem which always searches for a distance that minimizes intraclass distances while maximizing interclass distances.
Question:
the person reidentification problem has four characteristics
- The intraclass variation can be large and, more importantly, can vary significantly for different classes
- The interclass variation also varies drastically across different pairs of classes and there are often severe overlaps between classes in a feature space
- In order to capture the large intra and intervariations, the number of classes is necessarily large
- Annotating a large number of matched people across camera views is not only tedious, but also inherently limited in its usefulness
the data are inherently undersampled for building a representative class distribution
a learning model could easily be overfitted and/or be intractable if it is learned by minimizing intraclass distance and maximizing interclass distance simultaneously by brute-force
Solution(part 2):
- formulate the problem as a relative distance comparison (RDC) problem
- the model aims to learn an optimal distance in the sense that for a given query image, the true match is desired to be ranked higher than the wrong matches among the gallery image set
- not easily biased by large variations across many undersampled classes as it aims to seek an optimized individual comparison between any two data points rather than comparison among data distribution boundaries or among clusters of data
- Furthermore, in order to alleviate the large space complexity (memory usage cost) and the local optimum learning problem due to the proposed iterative algorithm for solving high-order nonlinear optimization criterion, we develop an ensemble RDC in this work
Details:
Proposed Relative Distance Comparison Learning
给出训练集\(Z={\{(\mathbf{z_i},y_i)\}}^N_{i=1}\),其中\(\mathbf{z_i}\)是表示一个视图中一个人的多维特征向量,\(y_i\)是对呀的类标签(人的ID)。
定义集合\(O_i=\{O_i = (x^p_i, x^n_i)\}\),其中\(x^p_i\)为两个相同类别样本的差异向量,\(x^n_i\)为两个不同类别样本的差异向量
\[ x=d(\mathbf{z,z'}),\quad \mathbf{z,z'} \in R^q\]
其中d是作用在矩阵每个元素上的差异函数。
给定\(O\),距离函数\(f\)以差异向量作为输入,通过相对距离比较的方式进行学习,从而使得
\[ f(x^p_i) < f(x^n_i)\]
为了描述这个优化目标,并且让它可以求导,令
\[C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)=\left(1+\exp \left\{f\left(\mathbf{x}_{i}^{p}\right)-f\left(\mathbf{x}_{i}^{n}\right)\right\}\right)^{-1}\]
假定the events of distance comparison between a relevant pair and a related irrelevant pair are independent,优化目标成为
\[\min _{f} r(f, O),\quad r(f, O)=-\log \left(\prod_{O_i} C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)\right)\]
令\(f\)为马氏距离,其中M为半正定矩阵。问题转化为学习M。
\[f(\mathbf{x})=\mathbf{x}^{T} \mathbf{M} \mathbf{x}, \quad \mathbf{M} \succeq 0\]
对矩阵M作特征分解,
\[\mathbf{M}=\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{T}=\mathbf{W} \mathbf{W}^{T}, \quad \mathbf{W}=\mathbf{A} \mathbf{\Lambda}^{\frac{1}{2}}\]
其中\(\mathbf{A}\)由正交特征向量构成,而\(\mathbf{\Lambda}\)由对应特征值构成
令\(\mathbf{W}=(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}, \ldots, \mathbf{w}_{L})\)
问题转化为
\[\min _{\mathbf{W}} r(\mathbf{W}, O), \text { s.t. } \quad \mathbf{w}_{i}^{T} \mathbf{w}_{j}=0, \forall i \neq j\]
\[
r(\mathbf{W}, O)=\sum_{O_{i}} \log \left(1+\exp \left\{\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{p}\right\|^{2}-\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{n}\right\|^{2}\right\}\right)
\]
上式即 relative distance comparisong for person reidentification
An Iterative Optimization Algorithm
- 初值:
- \(O_i=\{O_i = (x^p_i, x^n_i)\},\quad \epsilon \gt 0\)
- \(\mathbf{w}_{0} \longleftarrow \mathbf{0}, \quad \tilde{\mathbf{w}}_{0} \longleftarrow \mathbf{0}\)
- \(\mathbf{x}_{i}^{s, 0} \longleftarrow \mathbf{x}_{i}^{s}, s \in\{p, n\}, O^{0} \longleftarrow O\)
第\(l\)次迭代:
- 令优化目标中的项
\[a_{i}^{l+1}=\exp \left\{\sum_{j=0}^{l}\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{p, j}\right\|^{2}-\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{n, j}\right\|^{2}\right\}\]
其中\(\mathbf{x}_{i}^{p, l},\mathbf{x}_{i}^{n, l}\)为第\(l\)次迭代的差别向量,定义为
\[\mathbf{x}_{i}^{s, \ell}=\mathbf{x}_{i}^{s, l-1}-\tilde{\mathbf{w}}_{l-1} \tilde{\mathbf{w}}_{l-1}^{T} \mathbf{x}_{i}^{s, l-1}, \quad s \in\{p, n\}, i=1, \ldots,|O|\]
其中\(l \ge 1\)并且\(\tilde{\mathbf{w}}_{l-1} = \mathbf{w}_{l-1} / \|\mathbf{w}_{l-1}\|\)
(个人理解,相当于一个动量)
- 计算\(\mathbf{x}_{i}^{p, l+1},\mathbf{x}_{i}^{n, l+1}\),得到新的\(O^{l+1}\)
梯度下降法最小化目标
\[\mathbf{w}_{l+1}=\arg \min _{\mathbf{w}} r_{l+1}\left(\mathbf{w}, \mathbf{O}^{l+1}\right)\]
其中
\[r_{l+1}(\mathbf{w}, \mathbf{O}^{l+1})=\sum_{O_{i}^{l+1}} \log (1+a_{i}^{l+1} \exp \{\|\mathbf{w}^{T} \mathbf{x}_{i}^{p, l+1}\|^{2}-\|\mathbf{w}^{T} \mathbf{x}_{i}^{n, l+1}\|^{2}\})\]
\(a^{l+1}_i\)的存在考虑上一次迭代(上一组数据)的影响
注意到\(\mathbf{w}_{l-1}^{T} \mathbf{x}_{i}^{s, l}=0\),过早的迭代样本不会影响到下一次的\(w\)
出口:
\[r_{l}\left(\mathbf{w}_{l}, O^{l}\right)-r_{l+1}\left(\mathbf{w}_{l+1}, O^{l+1}\right)<\varepsilon\]
ENSEMBLE LEARNING FOR LARGE SCALE COMPUTATION

Note for Reidentification by Relative Distance Comparison的更多相关文章
- 论文笔记:Deep feature learning with relative distance comparison for person re-identification
这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...
- PatentTips - Hamming distance comparison
BACKGROUND INFORMATION In a typical data processing environment, data may be transmitted in multiple ...
- 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics
摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- (转)Let’s make a DQN 系列
Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
- CVPR2016 Paper list
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...
- Latex中画出函数文件的调用关系拓扑图
流程图,思维导图,拓扑图通常能把我们遇到的一些复杂的关系结构用图形的方式展现出来.在Latex中要想画这样的拓扑图,有一个很好用的绘图工具包 pgf/tikz . 1.pgf/tikz的安装:pgf/ ...
- ArcGIS Engine开发之旅04---ARCGIS接口详细说明
原文:ArcGIS Engine开发之旅04---ARCGIS接口详细说明 ArcGIS接口详细说明... 1 1. IField接口(esriGeoDatabase)... 2 2. ...
随机推荐
- npm err! Unexpected end of JSON input while parsing near解决办法
npm install时出现npm err! Unexpected end of JSON input while parsing near错误 输入 npm cache clean --fore ...
- windows系统将Tomcat将控制台的日志重定向到日志文件
1 . 修改startup.bat 将 56 行注释,加上一行: call "%EXECUTABLE%" run %CMD_LINE_ARGS% >> ..\logs\ ...
- 宝塔面板1G内存安装mysql5.7提示“至少需要XX兆内存”的解决办法
打开文件:/www/server/panel/class/panelPlugin.py 搜索关键词:“至少” (可能在134行) 然后把这行if语句注释掉,如下图:
- 简述mysql问题处理
最近,有一位同事,咨询我mysql的一点问题, 具体来说, 是如何很快的将一个mysql导出的文件快速的导入到另外一个mysql数据库.我学习了很多mysql的知识, 使用的时间却并不是很多, 对于m ...
- 【转载】自定义View学习笔记之详解onMeasure
网上对自定义View总结的文章都很多,但是自己还是写一篇,好记性不如多敲字! 其实自定义View就是三大流程,onMeasure.onLayout.onDraw.看名字就知道,onMeasure是用来 ...
- GitHub小知识与教程
如果你是一枚Coder,但是你不知道Github,那么我觉的你就不是一个菜鸟级别的Coder,因为你压根不是真正Coder,你只是一个Code搬运工. 但是你如果已经在读这篇文章了,我觉的你已经知道G ...
- JUnit 4.x 与 5.x 的区别?
区别项 4.x 5.x 手动把测试和测试方法声明为public 需要 不需要 @Test 与JUnit 4的@Test注解不同的是,它没有声明任何属性,因为JUnit Jupiter中的测试扩展是基于 ...
- Opencv python图像处理-图像相似度计算
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...
- 基于 Keil MDK 移植 RT-Thread Nano
后文rtt代表RT-Thread 在官网公众号中,看到rtt发布了rtt nano,这个就很轻量级的rtos内核,把多余的驱动都裁剪了,因此移植工作量小,可以哪来学习一番,体验rtt之美 rtt现在也 ...
- Generative Adversarial Networks overview(4)
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章主要介绍Gan的应用篇,3,主要介绍图像应用,4, 主要介绍文本以及医药化学其他领域应用 原理篇请看 ...