link

Reidentification by Relative Distance Comparison

Challenge:

  • large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion
  • 之前的大部分算法寻找独特的视觉特征。但寻找在数据规模大、现实条件不同的数据集中能够保持鲁棒性的视觉特征仍然十分困难。
  • 在不同条件下,有些特征比其他特征更重要,更稳定,使用l1-Norm等普遍采用的标准的距离评估方法并不合适,因为它们会等权重地对待所有特征。

In order to find a correc match Given a query image of a person:

  • First, a feature representation is computed from both the query and each of the gallery images.
  • Second, the distance between each pair of potential matches is measured

Solution(part 1):

  • given a set of features extracted from each person image, we seek to quantify and differentiate these features by learning the optimal distance measure that is most likely to give correct matches.
  • In essence, images of each person in a training set form a class.
  • This learning problem can be framed as a distance learning problem which always searches for a distance that minimizes intraclass distances while maximizing interclass distances.

Question:

  • the person reidentification problem has four characteristics

    • The intraclass variation can be large and, more importantly, can vary significantly for different classes
    • The interclass variation also varies drastically across different pairs of classes and there are often severe overlaps between classes in a feature space
    • In order to capture the large intra and intervariations, the number of classes is necessarily large
    • Annotating a large number of matched people across camera views is not only tedious, but also inherently limited in its usefulness
  • the data are inherently undersampled for building a representative class distribution

  • a learning model could easily be overfitted and/or be intractable if it is learned by minimizing intraclass distance and maximizing interclass distance simultaneously by brute-force

Solution(part 2):

  • formulate the problem as a relative distance comparison (RDC) problem
  • the model aims to learn an optimal distance in the sense that for a given query image, the true match is desired to be ranked higher than the wrong matches among the gallery image set
  • not easily biased by large variations across many undersampled classes as it aims to seek an optimized individual comparison between any two data points rather than comparison among data distribution boundaries or among clusters of data
  • Furthermore, in order to alleviate the large space complexity (memory usage cost) and the local optimum learning problem due to the proposed iterative algorithm for solving high-order nonlinear optimization criterion, we develop an ensemble RDC in this work

Details:

Proposed Relative Distance Comparison Learning

给出训练集\(Z={\{(\mathbf{z_i},y_i)\}}^N_{i=1}\),其中\(\mathbf{z_i}\)是表示一个视图中一个人的多维特征向量,\(y_i\)是对呀的类标签(人的ID)。

定义集合\(O_i=\{O_i = (x^p_i, x^n_i)\}\),其中\(x^p_i\)为两个相同类别样本的差异向量,\(x^n_i\)为两个不同类别样本的差异向量

\[ x=d(\mathbf{z,z'}),\quad \mathbf{z,z'} \in R^q\]

其中d是作用在矩阵每个元素上的差异函数。

给定\(O\),距离函数\(f\)以差异向量作为输入,通过相对距离比较的方式进行学习,从而使得

\[ f(x^p_i) < f(x^n_i)\]

为了描述这个优化目标,并且让它可以求导,令

\[C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)=\left(1+\exp \left\{f\left(\mathbf{x}_{i}^{p}\right)-f\left(\mathbf{x}_{i}^{n}\right)\right\}\right)^{-1}\]

假定the events of distance comparison between a relevant pair and a related irrelevant pair are independent,优化目标成为

\[\min _{f} r(f, O),\quad r(f, O)=-\log \left(\prod_{O_i} C_{f}\left(\mathbf{x}_{i}^{p}, \mathbf{x}_{i}^{n}\right)\right)\]

令\(f\)为马氏距离,其中M为半正定矩阵。问题转化为学习M。
\[f(\mathbf{x})=\mathbf{x}^{T} \mathbf{M} \mathbf{x}, \quad \mathbf{M} \succeq 0\]

对矩阵M作特征分解,

\[\mathbf{M}=\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{T}=\mathbf{W} \mathbf{W}^{T}, \quad \mathbf{W}=\mathbf{A} \mathbf{\Lambda}^{\frac{1}{2}}\]

其中\(\mathbf{A}\)由正交特征向量构成,而\(\mathbf{\Lambda}\)由对应特征值构成

令\(\mathbf{W}=(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}, \ldots, \mathbf{w}_{L})\)

问题转化为

\[\min _{\mathbf{W}} r(\mathbf{W}, O), \text { s.t. } \quad \mathbf{w}_{i}^{T} \mathbf{w}_{j}=0, \forall i \neq j\]

\[
r(\mathbf{W}, O)=\sum_{O_{i}} \log \left(1+\exp \left\{\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{p}\right\|^{2}-\left\|\mathbf{W}^{T} \mathbf{x}_{i}^{n}\right\|^{2}\right\}\right)
\]

上式即 relative distance comparisong for person reidentification

An Iterative Optimization Algorithm

  • 初值:

    • \(O_i=\{O_i = (x^p_i, x^n_i)\},\quad \epsilon \gt 0\)
    • \(\mathbf{w}_{0} \longleftarrow \mathbf{0}, \quad \tilde{\mathbf{w}}_{0} \longleftarrow \mathbf{0}\)
    • \(\mathbf{x}_{i}^{s, 0} \longleftarrow \mathbf{x}_{i}^{s}, s \in\{p, n\}, O^{0} \longleftarrow O\)
  • 第\(l\)次迭代:

    • 令优化目标中的项

    \[a_{i}^{l+1}=\exp \left\{\sum_{j=0}^{l}\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{p, j}\right\|^{2}-\left\|\mathbf{w}_{j}^{T} \mathbf{x}_{i}^{n, j}\right\|^{2}\right\}\]

    其中\(\mathbf{x}_{i}^{p, l},\mathbf{x}_{i}^{n, l}\)为第\(l\)次迭代的差别向量,定义为

    \[\mathbf{x}_{i}^{s, \ell}=\mathbf{x}_{i}^{s, l-1}-\tilde{\mathbf{w}}_{l-1} \tilde{\mathbf{w}}_{l-1}^{T} \mathbf{x}_{i}^{s, l-1}, \quad s \in\{p, n\}, i=1, \ldots,|O|\]

    其中\(l \ge 1\)并且\(\tilde{\mathbf{w}}_{l-1} = \mathbf{w}_{l-1} / \|\mathbf{w}_{l-1}\|\)

    (个人理解,相当于一个动量)

    • 计算\(\mathbf{x}_{i}^{p, l+1},\mathbf{x}_{i}^{n, l+1}\),得到新的\(O^{l+1}\)

    梯度下降法最小化目标

    \[\mathbf{w}_{l+1}=\arg \min _{\mathbf{w}} r_{l+1}\left(\mathbf{w}, \mathbf{O}^{l+1}\right)\]

    其中

    \[r_{l+1}(\mathbf{w}, \mathbf{O}^{l+1})=\sum_{O_{i}^{l+1}} \log (1+a_{i}^{l+1} \exp \{\|\mathbf{w}^{T} \mathbf{x}_{i}^{p, l+1}\|^{2}-\|\mathbf{w}^{T} \mathbf{x}_{i}^{n, l+1}\|^{2}\})\]

    \(a^{l+1}_i\)的存在考虑上一次迭代(上一组数据)的影响

    注意到\(\mathbf{w}_{l-1}^{T} \mathbf{x}_{i}^{s, l}=0\),过早的迭代样本不会影响到下一次的\(w\)

  • 出口:

\[r_{l}\left(\mathbf{w}_{l}, O^{l}\right)-r_{l+1}\left(\mathbf{w}_{l+1}, O^{l+1}\right)<\varepsilon\]

ENSEMBLE LEARNING FOR LARGE SCALE COMPUTATION

Note for Reidentification by Relative Distance Comparison的更多相关文章

  1. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  2. PatentTips - Hamming distance comparison

    BACKGROUND INFORMATION In a typical data processing environment, data may be transmitted in multiple ...

  3. 论文阅读笔记(二)【IJCAI2016】:Video-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics

    摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: ...

  4. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  5. (转)Let’s make a DQN 系列

    Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...

  6. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  7. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  8. Latex中画出函数文件的调用关系拓扑图

    流程图,思维导图,拓扑图通常能把我们遇到的一些复杂的关系结构用图形的方式展现出来.在Latex中要想画这样的拓扑图,有一个很好用的绘图工具包 pgf/tikz . 1.pgf/tikz的安装:pgf/ ...

  9. ArcGIS Engine开发之旅04---ARCGIS接口详细说明

    原文:ArcGIS Engine开发之旅04---ARCGIS接口详细说明 ArcGIS接口详细说明... 1 1.      IField接口(esriGeoDatabase)... 2 2.    ...

随机推荐

  1. 为元素添加 title 属性

    ---恢复内容开始--- 可以使用title属性(不要与title元素混淆)为网站上任何部分加上提示标签. ... <ul title="Table of Contents" ...

  2. 基于JPA的分页/排序实现

    Page<ClassOrder> findByMember_MemberID(long id, Pageable pageable); Controller代码: public Model ...

  3. Java JDBC结果集的处理

    结果集指针的移动 while (resultSet.next()){ //...... } 指针最初指向第一条记录之前,next()是指向下一个位置,返回的是boolean值,true表示有内容(记录 ...

  4. 补充1:IDA的脚本IDC语言

    1.IDA脚本的打开与使用: IDA脚本两种语言:IDC(IDC,本地脚本语言)和Python 2.IDC语言介绍 1.IDC变量:IDC是一种松散的语言,没有明确的类型.使用3中数据类型,整数(ID ...

  5. Oracle ERP 库存管理(业务流程 核心流程)

    库存核心业务 库存管理的核心是对货物本身的管理,是对货物的数量与相关属性的管理,目的是为销售与采购服务,确保合理的库存保有量,处理库存分类帐目与进出流水帐,以单据的形式基本涵盖仓库的各种进出库业务. ...

  6. 第十一周LINUX 学习笔记

    keepalived keepalived:    基于vrrp(虚拟冗余路由协议)的实现     virtual server: 对于IPVS    vrrp_script: 调用外部脚本 ngin ...

  7. BST二叉树的二分查找

    900. 二叉搜索树中最接近的值 中文 English 给一棵非空二叉搜索树以及一个target值,找到在BST中最接近给定值的节点值 样例 样例1 输入: root = {5,4,9,2,#,8,1 ...

  8. MoveIt简单编程

    目的:使用一些简单代码使机器人运动到指定位置.讲解代码怎么实现机器人的运动. 参考文献: 第一个博客需要下载<Mastering ROS for robotics Programming> ...

  9. Beta产品测试报告:那周余嘉熊掌将得队、为了交项目干杯队

    测试对象: 那周余嘉熊掌将得队 一.截图 安装截图 运行截图 二.测试情况 1.第一次上手体验感觉如何?能否正常运行? 界面UI设计令人眼前一亮,客户端和管理员端皆可正常运行.组件动画流畅,响应流畅, ...

  10. The Difference between Gamification and Game-Based Learning

    http://inservice.ascd.org/the-difference-between-gamification-and-game-based-learning/ Have you trie ...