很多次翻看DDPM,始终不太能理解论文中提到的\(\text{Variational Inference}\)到底是如何在这个工作中起到作用。五一假期在家,无意间又刷到徐亦达老师早些年录制的理论视频,没想到其中也有介绍这部分的内容。老师的上课方式总是娓娓道来,把每一步都讲解得很仔细。本文记录一下个人对开头问题的思考。

Background

如果需要简略地介绍一下DDPM这个工作,可能会用以下几句话简单地描述:DDPMMarkov的形式对数据(图片)“扩散过程”建模,使用神经网络进行训练拟合,学习数据的概率分布。

所以对于生成任务来说,希望从给定数据中学习到的是数据的潜在信息。比如图片生成,在给定一些图片后,模型学习到的是“正常图片长什么样子”,如:

  1. 一张包含手机正面的图片会有【手机屏幕】;
  2. 一张包含猫咪的图片会有人们观察到的猫咪模样;
  3. ...

对于图片中每个像素点和附近的像素点,进行“合理”布局,才能生成“符合人们认知的图片”。

图片生成能像常见的机器学习任务如分类任务、回归任务,能基于maximize likelihood的形式来训练么?

结论是很难,先回顾如何做maximum likelihood。给定一批数据,首先需要假定数据服从的分布,接着写出似然函数,之后直接通过解析解的形式或是梯度下降的形式,求出分布。

问题就出在假定分布这一步,没有人知道图片客观上服从什么分布。那如果使用神经网络直接拟合可以么?这好像也不现实,拿一张512*512*3的图片来说,网络输出层共有约75w的数值。

对于图片生成还有另外一个问题,世界上的图片太多了,目之所及稍做处理,皆为图片。即便使用神经网络能拟合,最后生成的图片很难存在多样性。

那目前图片生成模型都是怎么做的,比如VAE或是本文即将要介绍的Diffusion Model,它们学习的都是数据分布\(p(x)\),但直接求\(p(x)\)这么麻烦,需要怎么做?这其实也是\(\text{Variational Inference}\)的核心思想,“曲线救国”,通过引入其它分布,将原本难以优化的问题转变为可优化问题。

ELOB

先把上述提到的所有背景先抛开,研究一下\(p(x)\),看看能得到什么有意思的结论。

a. 基于条件概率分布,引入新的随机变量\(z\):\(p(x) = \frac{p(x, z)}{p(z\mid x)}\);

b. 对于两边同时取\(\ln\),等式依然成立,因此有:\(\ln{p(x)} = \ln{\frac{p(x, z)}{p(z \mid x)}}\);

c. 右边分子分母同乘以\(q(z)\):\(\ln{p(x)} = \ln{\frac{p(x, z) * q(z)}{p(z \mid x) * q(z)}} = \ln{\left(\frac{p(x, z)}{q(z)} * \frac{q(z)}{p(z \mid x)}\right)} = \ln{\frac{p(x, z)}{q(z)}} + \ln{\frac{q(z)}{p(z \mid x)}}\)

d. 再次,对于上式左右两边求关于\(q(z)\)的期望,等式依然成立:

\[\begin{aligned}
&\mathbb{E}_{z\sim q(z)}{[\ln{p(x)}]} = \mathbb{E}_{z\sim q(z)}{(\ln{\frac{p(x, z)}{q(z)}} + \ln{\frac{q(z)}{p(z \mid x)}})} \\
\iff & \int_z q(z)\ln{p(x)}dz = \int_z q(z)\ln{\frac{p(x, z)}{q(z)}}dz + \int_z q(z)\ln{\frac{q(z)}{p(z \mid x)}}dz \\
\iff & \ln{p(x)} = \int_z q(z)\ln{\frac{p(x, z)}{q(z)}}dz + \int_z q(z)\ln{\frac{q(z)}{p(z \mid x)}}dz
\end{aligned}
\tag{1}
\]

一系列变换后,\((1)\)式是最后的推导结果,等式右边由两个项组成。第二个项\(\int_z q(z)\ln{\frac{q(z)}{p(z \mid x)}}dz\),叫做KL散度,它被用来衡量两个分布之间的“距离”,性质是值不小于0

这样一来,通过\((1)\)可以得到不等式\((2)\):

\[\begin{equation*}
\ln{p(x)} \geq \int_z q(z)\ln{\frac{p(x, z)}{q(z)}}dz
\end{equation*}
\tag{2}
\]

\((1)\)式右边的第一项,同时也是\((2)\)式的右边项,被学者们叫做\(\text{ELBO(Evidence Lower Bound)}\)。

Objective Function

上述推导的\((2)\)式可以被视作“定理”一般的存在,即对于某个分布的对数形式,总可以找到它的下界。

那\((2)\)式可以用来做什么?在Background中提到,图片生成任务中的\(p(x)\)想要对它做maximum likelihood根本无法做起。目标依然是最大化\(p(x)\),但有了\((2)\)式,求解的目标可以转移到最大化它的下界\(\text{ELBO}\)。

这也是论文中提到的:

This paper presents progress in diffusion probabilistic models. A diffusion probabilistic model (which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using variational inference to produce samples matching the data after finite time.

接下来,回到论文中,看看是如何一步步推导出DDPM的优化目标。\((3)\)式直接摘录于论文:

\[\begin{equation*}
\ln{p(x)} \geq \int_z q(z)\ln{\frac{p(x, z)}{q(z)}}dz = \mathbb{E}_{z \sim q(z)}\left[\ln{\frac{p(x,z)}{q(z)}}\right]
\end{equation*}
\tag{2}
\]
\[\begin{equation*}
\mathbb{E}\left[-\log p_\theta\left(\mathbf{x}_0\right)\right] \leq \mathbb{E}_q\left[-\log \frac{p_\theta\left(\mathbf{x}_{0: T}\right)}{q\left(\mathbf{x}_{1: T} \mid \mathbf{x}_0\right)}\right]=\mathbb{E}_q\left[-\log p\left(\mathbf{x}_T\right)-\sum_{t \geq 1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)}\right]=: L
\end{equation*}
\tag{3}
\]

下面一项项地对\((3)\) 进行拆解,并且将它与\((2)\)比对,能帮助更好地理解:

  1. \((3)\)不等号左边的\(\mathbb{E}\left[-\log p_\theta\left(\mathbf{x}_0\right)\right]\)进一步化简就是\(-\log p_\theta\left(\mathbf{x}_0\right)\)。其中,\(p_\theta\left(\mathbf{x}_0\right)\)便是模型要学习的最终目标:图像的分布,\(\theta\)是模型的参数,\(\mathbf{x}_0\)是图片;

  2. \((2)\)式的左右两边同时加上符号,\(\geq\)变为\(\leq\);

  3. 看\((3)\)不等式右边部分,\(\mathbb{E}_q\left[-\log \frac{p_\theta\left(\mathbf{x}_{0: T}\right)}{q\left(\mathbf{x}_{1: T} \mid \mathbf{x}_0\right)}\right]\)

    1. 很明显,\(q(\mathbf{x}_{1:T} \mid \mathbf{x}_0)\)相当于\((2)\)中引入的额外分布\(q(z)\)。对于\(z\),在生成模型中会给它一个称呼:隐变量\((\text{latent})\)。实际上,在diffusion models里,对\(\mathbf{x}_0\)加噪后的\(\mathbf{x}_1,\mathbf{x}_2,\ldots, \mathbf{x}_T\)就可以看作隐变量,那不妨记作\(z := \{\mathbf{x}_1,\mathbf{x}_2,\ldots, \mathbf{x}_T\}\);

    2. \(p_\theta\left(\mathbf{x}_{0: T}\right) = p_\theta\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{T}\right)\),是关于\(\mathbf{x}_0, z\)的联合概率分布,因为选用马尔代夫链建模,那么依据马尔可夫链的性质,论文定义:

\[\begin{equation*}
\begin{aligned}
q\left(\mathbf{x}_{1: T} \mid \mathbf{x}_0\right)&:=\prod_{t=1}^T q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right) \\
p_\theta\left(\mathbf{x}_{0: T}\right)&:=p\left(\mathbf{x}_T\right) \prod_{t=1}^T p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)
\end{aligned}
\end{equation*}
\tag{4}
\]
  1. 将\((4)\)带入\((3)\)不等式右边的第一项,得到\(L\):
\[\begin{equation*}
\begin{aligned}
&\mathbb{E}_q\left[-\log \frac{p_\theta\left(\mathbf{x}_{0: T}\right)}{q\left(\mathbf{x}_{1: T} \mid \mathbf{x}_0\right)}\right] \\
=&\mathbb{E}_q\left[-\log \frac{p\left(\mathbf{x}_T\right) \prod_{t=1}^T p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{\prod_{t=1}^T q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)}\right] \\
=&\mathbb{E}_q\left[-\log p\left(\mathbf{x}_T\right)-\sum_{t \geq 1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)}\right] := L
\end{aligned}
\end{equation*}
\]

到目前为止,经过了很多轮的变换以及数学公式,先捋一遍,再往下。\(L\)是一个替代的优化目标,

\[\mathop{\arg\min}{(L)} \iff \mathop{\arg\min}{(-\ln{p}_{\theta}(\mathbf{x}_0))} \iff \mathop{\arg\max}{(\ln{p}_{\theta}(\mathbf{x}_0))}
\]

接下来,论文中对\(L\)进行了重写,以下步骤直接摘录自论文\(\text{Appendix A}\)

\[\begin{equation*}
\begin{aligned}
L & =\mathbb{E}_q\left[-\log \frac{p_\theta\left(\mathbf{x}_{0: T}\right)}{q\left(\mathbf{x}_{1: T} \mid \mathbf{x}_0\right)}\right] \\ & =\mathbb{E}_q\left[-\log p\left(\mathbf{x}_T\right)-\sum_{t \geq 1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)}\right] \\ & =\mathbb{E}_q\left[-\log p\left(\mathbf{x}_T\right)-\sum_{t>1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)}-\log \frac{p_\theta\left(\mathbf{x}_0 \mid \mathbf{x}_1\right)}{q\left(\mathbf{x}_1 \mid \mathbf{x}_0\right)}\right] \\
&=\mathbb{E}_q\left[-\log p\left(\mathbf{x}_T\right)-\sum_{t>1} \log \left[\frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0\right)} \cdot \frac{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_0\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_0\right)}\right]-\log \frac{p_\theta\left(\mathbf{x}_0 \mid \mathbf{x}_1\right)}{q\left(\mathbf{x}_1 \mid \mathbf{x}_0\right)}\right]
\end{aligned}
\end{equation*}
\tag{5}
\]

倒数两步的变换发生在第二项,具体依据为:

\[\begin{aligned}
q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)
=& \frac{q\left(\mathbf{x}_t, \mathbf{x}_{t-1}\right)}{q\left(\mathbf{x}_{t-1}\right)} \\
=& \frac{q\left(\mathbf{x}_t, \mathbf{x}_{t-1} \mid \mathbf{x}_{0}\right) *q(\mathbf{x}_{0})}{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{0}\right) * q(\mathbf{x}_{0})} \\
=& \frac{q\left(\mathbf{x}_t, \mathbf{x}_{t-1} \mid \mathbf{x}_{0}\right) }{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_0\right)}
\end{aligned}
\quad \Rightarrow \quad
\begin{aligned}
&\sum_{t>1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_{t-1}\right)} \\
=& \sum_{t>1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_t, \mathbf{x}_{t-1} \mid \mathbf{x}_{0}\right) } \cdot {q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_0\right)} \\
=& \sum_{t>1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0\right)} \cdot \frac{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_0\right)}{q\left(\mathbf{x}_t \mid \mathbf{x}_0\right)}
\end{aligned}
\]

接着对\((5)\)进行改写得到最终形式\((6)\):

\[\begin{aligned}
L &=\mathbb{E}_q\left[-\log \frac{p\left(\mathbf{x}_T\right)}{q\left(\mathbf{x}_T \mid \mathbf{x}_0\right)}-\sum_{t>1} \log \frac{p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)}{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0\right)}-\log p_\theta\left(\mathbf{x}_0 \mid \mathbf{x}_1\right)\right] \\
&=\mathbb{E}_q[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_T \mid \mathbf{x}_0\right) \| p\left(\mathbf{x}_T\right)\right)}_{L_T}+\sum_{t>1} \underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0\right) \| p_\theta\left(\mathbf{x}_{t-1} \mid \mathbf{x}_t\right)\right)}_{L_{t-1}} \underbrace{-\log p_\theta\left(\mathbf{x}_0 \mid \mathbf{x}_1\right)}_{L_0}]
\end{aligned}
\tag{6}
\]

Summary

太好了,对于\((6)\)来说,它最起码是个可以优化的目标函数了,因为论文中定义马尔可夫链相邻状态的转变是服从高斯分布的。当然在论文中,\((6)\)还会进一步被改写,得到更加精简的\(\text{loss function}\)形式。

DDPM是应用\(\text{variational inference}\)进行优化求解的典型例子,很值得借鉴学习。

Reference

Part2: DDPM as Example of Variational Inference的更多相关文章

  1. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference

    涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...

  2. [Bayes] Variational Inference for Bayesian GMMs

    为了世界和平,为了心知肚明,决定手算一次 Variational Inference for Bayesian GMMs 目的就是达到如下的智能效果,扔进去六个高斯,最后拟合结果成了两个高斯,当然,其 ...

  3. 变分推断(Variational Inference)

    (学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这 ...

  4. Improved Variational Inference with Inverse Autoregressive Flow

    目录 概 主要内容 代码 Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Va ...

  5. Variational Inference with Normalizing Flow

    目录 概 主要内容 一些合适的可逆变换 代码 Rezende D., Mohamed S. Variational Inference with Normalizing Flow. ICML, 201 ...

  6. Variational Inference

    作者:孙九爷链接:https://www.zhihu.com/question/41765860/answer/101915528来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  7. 变分推断(Variational Inference)

    变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...

  8. 一文详解扩散模型:DDPM

    作者:京东零售 刘岩 扩散模型讲解 前沿 人工智能生成内容(AI Generated Content,AIGC)近年来成为了非常前沿的一个研究方向,生成模型目前有四个流派,分别是生成对抗网络(Gene ...

  9. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  10. Variational Bayes

    一.前言 变分贝叶斯方法最早由Matthew J.Beal在他的博士论文<Variational Algorithms for Approximate Bayesian Inference> ...

随机推荐

  1. python轮流监听多台服务器资源情况

    在主动持续监听某台服务器基础上,优化为同时监听多台服务器资源占用情况: 优点:较初版,设备监听范围有了明显提升: 缺点:主动式,轮询方式,实时性较差. #-*- coding: utf-8 -*- # ...

  2. java多线性--线程创建

    java多线性--线程创建 什么是多线程:不同的功能同时进行 Process(进程)与Thread(线程) 进程是执行程序的一次执行过程,是一个动态的概念.是系统分配资源的单位. 一个进程分为多个线程 ...

  3. LeetCode 周赛 338,贪心 / 埃氏筛 / 欧氏线性筛 / 前缀和 / 二分查找 / 拓扑排序

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 上周末是 LeetCode 第 338 场周赛,你参加了吗?这场周赛覆盖的知识点很多,第 ...

  4. 基于el-cascader级联选择器实现只有最后一级可以多选(已发布到npm & github)

    github地址:地址 背景: 我们经常级联合选择器多选的需求,但是element UI提供的级联选择器并不能只多选最后一级,所以我考虑基于element UI的级联选择器优化一下,实现可以多选最后一 ...

  5. CentOS7-自动化部署web集群

    一.项目要求 1.创建role,通过role完成项目(可能需要多个role) 2.部署nginx调度器(node2主机) 3.部署2台lnmp服务器(node3,node4主机) 4.部署mariad ...

  6. 白嫖一个月的ES,完成了与MySQL的联动

    前言 <腾讯云 x Elasticsearch三周年>活动来了.文章写之前的思路是:在腾讯云服务器使用docker搭建ES.但是理想很丰满,显示很骨感,在操作过程中一波三折,最后还是含着泪 ...

  7. Etherscan本地多文件开源(VScode)

    项目创建 创建文件夹  mkdir Duckereum ​ cdDuckereum 添加nodejs配置  npm init -y 安装依赖添加  npm install -D hardhat npm ...

  8. 欢迎使用园子的 vscode 插件

    为了方便大家通过 vscode 编辑博文,我们做了一个小插件,插件名称是"博客园Cnblogs客户端",插件列表中搜索"博客园"或者 "cnblogs ...

  9. 性能最快的代码分析工具,Ruff 正在席卷 Python 圈!

    几天前,Python 开源社区又出了一个不小的新闻:HTTPX 和 Starlette 在同一天将在用的代码分析工具(flake8.autoflake 和 isort)统一替换成了 Ruff. HTT ...

  10. day118:MoFang:根据激活/未激活的状态分别显示树桩&种植植物&解锁树桩&化肥/修剪/浇水/宠物粮小图标数字的显示

    登录 1.根据激活状态和未激活状态分别显示树桩 2.用户使用植物道具进行果树种植 3.解锁树桩 4.化肥/修剪/浇水/宠物粮小图标显示 种植栏的功能实现 1. 客户端需要的植物相关参数: 总树桩数量, ...