Self-Attention 和 Transformer
1.Self-Attention

之前的RNN输入是难以并行化的,我们下一个输入可能依赖前一个输出,只有知道了前面的输出才能计算后面的输出。
于是提出了 self-attention ,但是这时候 $b^{i}$ 能够并行化计算

我们的输入 $x^{i}$,先经过一个Embedding,变成 $a^{i}$ ,然后丢进 self-attention 层中。如上图所示。
在self-attention中,我们的 $a^{i}$ 都乘上3个不同的矩阵,进行 transformation,得到3个不同的向量,分别是 $q$、$k$ 和 $v$。
$q$ 是query,它要去match的。$k$ 是key,用来被 $q$ match的;$v$ 是value,它是要被抽取出来的information。现在我们的每一个timestamp都有一个 $q$、$k$ 和 $v$ 这3个不同的向量。

接下来我们对拿每一个 $q$ 对每一个 $k$ 做attention。如上图所示,$q^{1}$ 和 $k^{1}$ 做attention,得到 $\alpha _{1,1}$,下标(1,1)表示 $q^{1}$ 和 $k^{1}$ 的attention
attention有许多算法,它做的本质事情就是 吃 两个向量,输出一个分数,这个分数表明两个向量有多匹配
然后 $q^{1}$ 和 $k^{i}$ 计算得到 $\alpha _{1,i}$ ,计算公式和计算示意图如上图所示。然后我们会把得到的 $\alpha _{1,i}$ 经过一个softmax,得到 $\hat{\alpha }_{1,i}$,如下图所示

得到 $\hat{\alpha }_{1,i}$ 后,让 $\hat{\alpha }_{1,i}$ 分别乘以 $v^{i}$后累加,得到 $b^{1}$,我们输出 sequence 的第一个向量就是 $b^{1}$。但可以发现我们产生 $b^{1}$ 就已经使用了整个 sequence 的信息。
self-attention 输入是一个 sequence,输出也是sequence

其他 $b^{i}$ 也是同样的计算流程,可以并行计算,比如 $b^{2}$,这样就得到了输出sequence的第二个向量

论文中的公式:$Attention(Q,K,V)=softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$
Q、K、V是矩阵各个向量拼接而成的矩阵,整个矩阵计算的示意图如下图所示
从上面可以看到,self-attention 就是一连串矩阵运算。
2.Multi-Head Attention
我们用 2 heads 的情况举例,这种情况下,我们的 $q^{i}$ 会分裂成两个—— $q^{i,1}$ 和 $q^{i,2}$。
实际中 head 的数目也是参数,可以调

然后 $q^{i,1}$ 和 $k^{i,1}$ 、$k^{j,1}$ 分别计算 attention,最后计算出 $b^{i,1}$,如上图所示。用同样的步骤计算出 $b^{i,1}$ 和 $b^{i,2}$,把它们两个 concat 后乘以一个矩阵 $W^{o}$ ,得到 $b^{i}$。

论文中的公式:$Multi-Head(Q,K,V)=Concat(head_{1},...,head_{h})W^{o}$
其中$head_{i}=Attention(QW^{Q}_{i},KW^{K}_{i},VW^{V}_{i})$
但是 self-attention 没有用到 sequence 的位置信息
所以在输入 $x^{i}$ 经过 transformation 得到 $a^{i}$ 后,还要加上一个 $e^{i}$, $e^{i}$ 是人工设置的,这个 $e^{i}$ 代表了位置信息。
论文3.5节Positional Encoding
定义这个向量的方式有多种多样。 比如,用 $p^{i}$ 表示位置信息,让 $p^{i}$ 和一个矩阵 $W^{p}$ 相乘得到的就是我们的 $e^{i}$

下面是做 self-attention 的一个动态示意图。可以看到 encoder 阶段 self-attention 是并行的且用到了所有单词的信息。

3.transformer
transformer 模型架构图如下图所示,对 encoder 和 decoder 使用了 self-attention 机制
左边是 encoder ,右边是 decoder

encoder 是左边灰色的图块,它可以重复 N 次,在 encoder 中,有一个 Multi-Head Attention 层,根据前面了解到的信息。这层的输入是一个 sequence,输出也是一个 sequence。如下图所示。
然后再经过 Add & Norm。Add 指我们会把 Multi-Head Attention 的输入和输出加起来得到 $b'$,Norm指我们会把得到的 $b'$ 做 Layer Norm。

Layer Norm 和 Batch Norm 的不同:
在做 Batch Norm 的时候,在同一个 batch 里面,对不同 data 同样的 dimension 做 normalization,希望整个 batch 里面同一个 dimension 的均值为0,方差为1。
Layer Norm 是给一组 data,我们希望不同 dimension 的均值为0,方差为1。如下图所示
之后再经过 Feed Forward ,它对刚刚的输出进行处理,然后再经过一个 Add & Norm。
下面看看右边的 decoder ,它也可以重复 N 次。

它的输入是上一个 tiemstamp 的输出,同样经过 embedding 和 positional encoding 后进入 decoder 中。decoder 的第一层是 Masked Multi-Head Attention,Masked 是说我们在做 self-attention 的时候这个 decoder 只会 attend 到它已经产生出来的 sequence。然后经过 Add & Norm ,再经过 Multi-Head,这个 Multi-Head Attention 会 attend 到之前 encoder 的输出,……,然后输出。

上面这张图显示了英语到法语翻译(eight attention heads之一)训练的 transformer 第5层到第6层中encoder 的 “it” 一词的 self-attention 分布。
可以看到 “it” attend 到了 animal,可以看到我们的模型自动学到了在做 attention 时,“it” 要 attend 到 “animal”。
当我们只改动左边的一个单词,把 tired 改为 wide。这句子里 “it” 再指动物,而是指 street,说它太宽了,我们的模型也能 attend 到 street。
详细文章:https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
Self-Attention 和 Transformer的更多相关文章
- Attention和Transformer详解
目录 Transformer引入 Encoder 详解 输入部分 Embedding 位置嵌入 注意力机制 人类的注意力机制 Attention 计算 多头 Attention 计算 残差及其作用 B ...
- 2. Attention Is All You Need(Transformer)算法原理解析
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...
- NLP学习(5)----attention/ self-attention/ seq2seq/ transformer
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-produc ...
- [阅读笔记]Attention Is All You Need - Transformer结构
Transformer 本文介绍了Transformer结构, 是一种encoder-decoder, 用来处理序列问题, 常用在NLP相关问题中. 与传统的专门处理序列问题的encoder-deco ...
- Attention & Transformer
Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq ...
- RealFormer: 残差式 Attention 层的Transformer 模型
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer ...
- 对Attention is all you need 的理解
https://blog.csdn.net/mijiaoxiaosan/article/details/73251443 本文参考的原始论文地址:https://arxiv.org/abs/1706. ...
- Paper Reading - Attention Is All You Need ( NIPS 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of ...
- [Attention Is All You Need]论文笔记
主流的序列到序列模型都是基于含有encoder和decoder的复杂的循环或者卷积网络.而性能最好的模型在encoder和decoder之间加了attentnion机制.本文提出一种新的网络结构,摒弃 ...
- 【转载】图解Transformer(完整版)!
在学习深度学习过程中很多讲的不够细致,这个讲的真的是透彻了,转载过来的,希望更多人看到(转自-张贤同学-公众号). 前言 本文翻译自 http://jalammar.github.io/illustr ...
随机推荐
- BigDecimal 的用法
1.初始化 BigDecimal discount=new BigDecimal(0.9); BigDecimal discount=new BigDecimal(200); 2.加减乘除 加法 ad ...
- linux--基础知识2
#超级用户root的家目录是/root ,而普通用户的家目录被存放在/home目录下 cd /目录 切换到指定目录 注意 / 是根目录 linux的一些重要目录 1.bin目录,用来存放常用的可执 ...
- 采集容器内存并写到excel
# coding=utf-8 import os import commands import re from pyExcelerator import * def execute(cmd): sta ...
- Java反编译工具Luyten-0.5.3
Luyten是一款很强大的反编译工具包,是一款github的开源工具,软件功能非常强大,界面简洁明晰.操作方便快捷,设计得很人性化. 工具软件下载路径:https://github.com/death ...
- 函数&&变量
#*- encoding=utf-8 -*import sysprint(sys.getdefaultencoding()) def test(x,y,z): print(x) print(y) pr ...
- UML快速理解
在团队协作过程中最常见的就是开会.开会最常用的就是图,而图中最常见的就是流程图.时序图.类图,这三个图可以清楚的描述你想解释的内容.学好类图不仅仅能帮助自己更清楚的梳理业务,还能提高开会效率. 上图是 ...
- mongodb 用户 权限 设置 详解
原文地址:http://blog.51yip.com/nosql/1575.html 我知道的关系型数据库都是有权限控制的,什么用户能访问什么库,什么表,什么用户可以插入,更新,而有的用户只有读取权限 ...
- Map和Set的联系
Java中的集合 Java中的集合包括三大类,它们是Set.List和Map,它们都处于java.util包中,Set.List和Map都是接口,它们有各自的实现类.Set的实现类主要有HashSet ...
- LeetCode--057--插入区间(java)
给出一个无重叠的 ,按照区间起始端点排序的区间列表. 在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间). 示例 1: 输入: intervals = [ ...
- vue项目-本机ip地址访问
修改 在 vue项目文件夹中的 package.json scripts >dev 添加 --host 0.0.0.0 "dev": "webpack-dev-se ...



