bzoj5020 & loj2289 [THUWC 2017]在美妙的数学王国中畅游 LCT + 泰勒展开
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=5020
题解
这个 appear 和 disappear 操作显然是强行加上去用力啊增加代码长度的。
所以相当于就是什么东西套个 LCT 就行了。
所以考虑怎么快速求出一堆东西的分值和。
\(sin, exp\),一次函数之间的加法似乎并没有什么优美的性质,所以我们考虑泰勒展开。
\]
我们把 \(v=ax+b\) 带进去,就是
\]
这样我们就可以求出每一个 \(x^i\) 前面的系数了。
\(sin\) 的话同理,就不重新写一遍了。一次函数的话 \(x^i\) 前面的系数根本不用算。
大概展开十几项就够了,这里开了 \(16\) 项。
这样话时间复杂度就是 \(O(m(16\log n+16^2))\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 100000 + 7;
const int M = 16;
#define lc c[0]
#define rc c[1]
int n, m;
ll fac[M], C[M][M];
struct Node {
int c[2], fa, rev;
double v[M], sum[M];
inline Node() {}
inline void set(const int &f, const double &a, const double &b) {
memset(v, 0, sizeof(v));
if (f == 1) {
double aa = 1;
for (int i = 0; i < M; ++i) {
double bb = 1;
for (int j = i; j < M; ++j, bb *= b)
if ((j & 1) && (j >> 1) & 1) v[i] -= C[j][i] * bb / fac[j];
else if ((j & 1) && !((j >> 1) & 1)) v[i] += C[j][i] * bb / fac[j];
v[i] *= aa, aa *= a;
}
} else if (f == 2) {
double aa = 1;
for (int i = 0; i < M; ++i) {
double bb = 1;
for (int j = i; j < M; ++j, bb *= b) v[i] += C[j][i] * bb / fac[j];
v[i] *= aa, aa *= a;
}
} else if (f == 3) v[0] = b, v[1] = a;
}
} t[N];
int st[N];
inline bool idtfy(int o) { return t[t[o].fa].rc == o; }
inline bool isroot(int o) { return t[t[o].fa].lc != o && t[t[o].fa].rc != o; }
inline void connect(int fa, int o, int d) { t[fa].c[d] = o, t[o].fa = fa; }
inline void pushup(int o) {
assert(o);
assert(!t[o].rev);
for (int i = 0; i < M; ++i)
t[o].sum[i] = t[t[o].lc].sum[i] + t[t[o].rc].sum[i] + t[o].v[i];
}
inline void pushdown(int o) {
if (!t[o].rev) return;
if (t[o].lc) t[t[o].lc].rev ^= 1, std::swap(t[t[o].lc].lc, t[t[o].lc].rc);
if (t[o].rc) t[t[o].rc].rev ^= 1, std::swap(t[t[o].rc].lc, t[t[o].rc].rc);
t[o].rev = 0;
}
inline void rotate(int o) {
assert(!isroot(o));
int fa = t[o].fa, pa = t[fa].fa, d1 = idtfy(o), d2 = idtfy(fa), b = t[o].c[d1 ^ 1];
if (!isroot(fa)) t[pa].c[d2] = o; t[o].fa = pa;
connect(o, fa, d1 ^ 1), connect(fa, b, d1);
pushup(fa), pushup(o);
assert(!t[0].lc && !t[0].rc);
}
inline void splay(int o) {
int x = o, tp = 0;
st[++tp] = x;
while (!isroot(x)) st[++tp] = x = t[x].fa;
while (tp) pushdown(st[tp--]);
while (!isroot(o)) {
int fa = t[o].fa;
if (isroot(fa)) rotate(o);
else if (idtfy(o) == idtfy(fa)) rotate(fa), rotate(o);
else rotate(o), rotate(o);
}
}
inline void access(int o) {
for (int x = 0; o; o = t[x = o].fa)
splay(o), t[o].rc = x, pushup(o);
}
inline void mkrt(int o) {
access(o), splay(o);
t[o].rev ^= 1, std::swap(t[o].lc, t[o].rc);
}
inline int getrt(int o) {
access(o), splay(o);
while (pushdown(o), t[o].lc) o = t[o].lc;
return splay(o), o;
}
inline void link(int x, int y) {
mkrt(x);
if (getrt(y) != x) t[x].fa = y;
else assert(0);
}
inline void cut(int x, int y) {
mkrt(x), access(y), splay(y);
if (t[y].lc == x && !t[x].rc) t[x].fa = t[y].lc = 0, pushup(y);
else assert(0);
}
inline void work() {
while (m--) {
char opt[10];
scanf("%s", opt);
if (*opt == 'a') {
int x, y;
read(x), read(y);
++x, ++y;
link(x, y);
} else if (*opt == 'd') {
int x, y;
read(x), read(y);
++x, ++y;
cut(x, y);
} else if (*opt == 'm') {
double a, b;
int x, opt;
read(x), read(opt), scanf("%lf%lf", &a, &b);
++x;
splay(x), t[x].set(opt, a, b), pushup(x);
} else {
int x, y;
double v, vv = 1, ans = 0;
read(x), read(y), scanf("%lf", &v);
++x, ++y;
if (getrt(x) != getrt(y)) { puts("unreachable"); continue; }
mkrt(x), access(y), splay(y);
for (int i = 0; i < M; ++i, vv *= v) ans += vv * t[y].sum[i];
printf("%.8le\n", ans);
}
}
}
inline void init() {
read(n), read(m);
fac[0] = 1;
for (int i = 1; i < M; ++i) fac[i] = fac[i - 1] * i;
C[0][0] = 1;
for (int i = 1; i < M; ++i) {
C[i][0] = 1;
for (int j = 1; j < M; ++j) C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
int opt;
double a, b;
read(opt);
for (int i = 1; i <= n; ++i) read(opt), scanf("%lf%lf", &a, &b), t[i].set(opt, a, b), pushup(i);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj5020 & loj2289 [THUWC 2017]在美妙的数学王国中畅游 LCT + 泰勒展开的更多相关文章
- BZOJ5020: [THUWC 2017]在美妙的数学王国中畅游(LCT,泰勒展开,二项式定理)
Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言: ...
- loj2289 [THUWC 2017]在美妙的数学王国中畅游(LCT+Taylor展开)
link 题目大意: 你需要维护一个树 每个点都有个sin(ax+b)或exp(ax+b)或ax+b 你需要维护一些操作:连边.删边.修改某个点的初等函数.询问某条树链上所有函数带入某个值后权值和或不 ...
- bzoj 5020(洛谷4546) [THUWC 2017]在美妙的数学王国中畅游——LCT+泰勒展开
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5020 https://www.luogu.org/problemnew/show/P4546 ...
- 【BZOJ5020】[THUWC 2017]在美妙的数学王国中畅游 泰勒展开+LCT
[BZOJ5020][THUWC 2017]在美妙的数学王国中畅游 Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数 ...
- BZOJ5020 [THUWC 2017]在美妙的数学王国中畅游LCT
题意很明显是要用LCT来维护森林 难点在于如何处理函数之间的关系 我们可以根据题目给的提示关于泰勒展开的式子 将三种函数变成泰勒展开的形式 因为$x∈[0,1]$ 所以我们可以将三个函数在$x_0=0 ...
- bzoj 5020: [THUWC 2017]在美妙的数学王国中畅游【泰勒展开+LCT】
参考:https://www.cnblogs.com/CQzhangyu/p/7500328.html --其实理解了泰勒展开之后就是水题呢可是我还是用了两天时间来搞懂啊 泰勒展开是到正无穷的,但是因 ...
- bzoj5020: [THUWC 2017]在美妙的数学王国中畅游
Description 数学王国中,每个人的智商可以用一个属于 [0,1]的实数表示.数学王国中有 n 个城市,编号从 0 到 n−1 ,这些城市由若干座魔法桥连接.每个城市的中心都有一个魔法球,每个 ...
- 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开
咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...
- [THUWC 2017]在美妙的数学王国中畅游
bzoj5020 \[答案误差只要小于 10^{-7}\] 题解 Taylor展开式: \[若f(x)的n阶导数在[a, b]内连续,则f(x)在x_{0}\in[a, b]可表示为\] \[f(x) ...
随机推荐
- gsensor架构和原理分析【转】
本文转载自:http://blog.csdn.net/u012296694/article/details/48055491 本文主要描述了在android2.3平台G-sensor相关软硬件的体系架 ...
- leetcode 287寻找重复数
这道题用STL容器就很好写了,可以用set也可以用map, 用unordered_map的C++代码如下: class Solution { public: int findDuplicate(vec ...
- Git-Runoob:Git 安装配置
ylbtech-Git-Runoob:Git 安装配置 1.返回顶部 1. Git 安装配置 在使用Git前我们需要先安装 Git.Git 目前支持 Linux/Unix.Solaris.Mac和 W ...
- prism Callback应用
Mock<IEventAggregator> mockEventAggregator; Mock<MyEvent> mockEvent; mockEventAggregator ...
- 基于jquery的bootstrap在线文本编辑器插件Summernote 简单强大
Summernote是一个基于jquery的bootstrap超级简单WYSIWYG在线编辑器.Summernote非常的轻量级,大小只有30KB,支持Safari,Chrome,Firefox.Op ...
- Python基础(函数部分)
写在前面 加勒比海盗今天上映! 一.函数的基本概念 - 函数是什么? 函数,就是一个'锤子',一个具有特定功能的'锤子',使用者可以在适当的时候使用这个'锤子',而不用再去从头做一个'锤子':即可以 ...
- 阶段3 1.Mybatis_05.使用Mybatis完成CRUD_5 Mybatis的CRUD-查询返回一行一列和占位符分析
聚合函数 模糊查询的另外一种写法 如果用户这种方式里面的value是固定的 因为在源码分析中,绑定的就是固定的value值 所以这里传参数的 没必要在用百分号了 删掉后 xml里面应该用这种方式来注释 ...
- DJ Java Decompiler
With DJ Java Decompiler you can decompile java class-files and save it in text or other format. It's ...
- Mybatis-plus 思维导图,让 Mybatis-plus 不再难懂
摘要: Mybatis-Plus(简称MP)是一个Mybatis的增强工具,在 Mybatis 的基础上只做增强不做改变,为简化开发.提高效率而生. mybatis-plus与mybatis myba ...
- LeetCode算法题-Positions of Large Groups(Java实现)
这是悦乐书的第323次更新,第346篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第193题(顺位题号是830).在由小写字母组成的字符串S中,那些相同的连续字符会组成集 ...