题目链接

题目描述

有一棵点数为 \(N\) 的树,树边有边权。给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

题解

有点难想的dp 我果然太菜了

%%%__stdcall

\(f[i][j]\) 为以\(i\)为根的子树, 选了染了\(j\)个黑点的最大贡献

然后就是树形背包。。

siz[u]为以u为根的子树大小


for (int j = Min(K, siz[u]); j >= 0; j--)
for (int k = 0; k <= Min(j, siz[v]); k++)
if (f[u][j-k] >= 0) {
long long val = 1ll*k*(K-k)*g[i].w + 1ll*(siz[v]-k)*(n-K+k-siz[v])*g[i].w;
f[u][j] = Max(f[u][j], f[u][j-k] + f[v][k] + val);
}

贡献为子树贡献加上该边的贡献(子树黑点个数 * 其它黑点个数 * 边权 + 子树白点个数 * 其它白点个数 * 边权 )

Code


#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std; inline int gi() {
int f = 1, s = 0;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -1, c = getchar();
while (c >= '0' && c <= '9') s = s*10+c-'0', c = getchar();
return f == 1 ? s : -s;
} const int N = 2010; struct node {
int to, next, w;
}g[N<<1];
int last[N], gl;
inline void add(int z, int x, int y) {
g[++gl] = (node) {y, last[x], z};
last[x] = gl;
g[++gl] = (node) {x, last[y], z};
last[y] = gl;
return ;
} int siz[N], n, K;
long long f[N][N]; inline void init(int u, int fa) {
siz[u] = 1;
for (int i = last[u]; i; i = g[i].next) {
int v = g[i].to;
if (v == fa) continue;
init(v, u);
siz[u] += siz[v];
}
return ;
}
#define Min(x, y) ((x<y)?x:y)
#define Max(x, y) ((x>y)?x:y)
inline void dfs(int u, int fa) {
memset(f[u], 128, sizeof(f[u]));
f[u][0] = f[u][1] = 0;
for (int i = last[u]; i; i = g[i].next) {
int v = g[i].to;
if (v == fa) continue;
dfs(v, u);
for (int j = Min(K, siz[u]); j >= 0; j--)
for (int k = 0; k <= Min(j, siz[v]); k++)
if (f[u][j-k] >= 0) {
long long val = 1ll*k*(K-k)*g[i].w + 1ll*(siz[v]-k)*(n-K+k-siz[v])*g[i].w;
f[u][j] = Max(f[u][j], f[u][j-k] + f[v][k] + val);
}
}
return ;
} int main() {
n = gi(), K = gi();
for (int i = 1; i < n; i++)
add(gi(), gi(), gi());
init(1, 0);
dfs(1, 0);
printf("%lld\n", f[1][K]);
return 0;
}

洛谷 P3177 [HAOI2015]树上染色的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. 洛谷P3177 [HAOI2015]树上染色(树形dp)

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  3. 洛谷P3177 [HAOI2015]树上染色(树上背包)

    题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...

  4. BZOJ4033或洛谷3177 [HAOI2015]树上染色

    BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...

  5. 洛谷 3177 [HAOI2015] 树上染色

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  6. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

  7. 【洛谷】P3177 [HAOI2015]树上染色

    懒得复制题面了直接传送门吧 分析 直接求点与点之间的距离感觉不是很好求,所以我们考虑换一个求法. 瞄了一眼题解 距离跟路径上边的长度有关,所以我们直接来看每一条边的贡献吧(这谁想得到啊) 对于每一条边 ...

  8. Luogu P3177 [HAOI2015]树上染色

    一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...

  9. P3177 [HAOI2015]树上染色

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

随机推荐

  1. 带你剖析WebGis的世界奥秘----Geojson数据加载(高级)(转)

    带你剖析WebGis的世界奥秘----Geojson数据加载(高级) 转:https://zxhtom.oschina.io/zxh/20160819.html  编程  java  2016/08/ ...

  2. 面试题:Java多线程必须掌握的十个问题 背1

    一.进程与线程?并行与并发? 进程代表一个运行中的程序,是资源分配与调度的基本单位.进程有三大特性: 1.独立性:独立的资源,私有的地址空间,进程间互不影响. 2.动态性:进程具有生命周期. 3.并发 ...

  3. LinkedHashMap原理以及场景

    http://www.cnblogs.com/xiaoxi/p/6170590.html

  4. 好的linux网站

    site:www.tldp.org rpm http://www.computerhope.com/unix.htm

  5. 《深度学习原理与TensorFlow实践》喻俨,莫瑜

    1. 深度学习简介 2. TensorFlow系统介绍 3. Hello TensorFlow 4. CNN看懂世界 5. RNN能说会道 6. CNN LSTM看图说话 7. 损失函数与优化算法 T ...

  6. 策略与计费控制(PCC)流程与信令流程

    该文为3GPP TS23.203-be0 条款6-7译文 策略与计费控制(PCC)流程[^4] IP-CAN 会话有三种显著的场景: 无网关控制会话需求,不会出现网关控制建立 需要网关控制会话支持:B ...

  7. 使用Fiddler进行IOS APP的HTTP抓包

    Fiddler不但能截获各种浏览器发出的HTTP请求, 也可以截获各种智能手机发出的HTTP/HTTPS请求.Fiddler能捕获IOS设备发出的请求,比如IPhone, IPad, MacBook. ...

  8. c# 解析MP3文件

    不说那么多,网上有很多关于MP3文件说明的. 该C#代码是将C\C++转化过来的,可能存在问题. 如有需要的朋友可以参考. 项目中的文件路径大家自己修改. 下载地址

  9. C#多线程编程实战1.5检测线程状态

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  10. vs 2017局域网内调试

    之前调试代码都是在本地启动服务,以  localhost:端口号   的形式调试,今天发现也是可以用ip地址的形式来调用接口,这种方式可以支持内网内Client端调用接口,实现调试的功能,具体方法如下 ...