洛谷 P3177 [HAOI2015]树上染色
题目链接
题目描述
有一棵点数为 \(N\) 的树,树边有边权。给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。
题解
有点难想的dp 我果然太菜了
%%%__stdcall
\(f[i][j]\) 为以\(i\)为根的子树, 选了染了\(j\)个黑点的最大贡献
然后就是树形背包。。
siz[u]为以u为根的子树大小
for (int j = Min(K, siz[u]); j >= 0; j--)
for (int k = 0; k <= Min(j, siz[v]); k++)
if (f[u][j-k] >= 0) {
long long val = 1ll*k*(K-k)*g[i].w + 1ll*(siz[v]-k)*(n-K+k-siz[v])*g[i].w;
f[u][j] = Max(f[u][j], f[u][j-k] + f[v][k] + val);
}
贡献为子树贡献加上该边的贡献(子树黑点个数 * 其它黑点个数 * 边权 + 子树白点个数 * 其它白点个数 * 边权 )
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
inline int gi() {
int f = 1, s = 0;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -1, c = getchar();
while (c >= '0' && c <= '9') s = s*10+c-'0', c = getchar();
return f == 1 ? s : -s;
}
const int N = 2010;
struct node {
int to, next, w;
}g[N<<1];
int last[N], gl;
inline void add(int z, int x, int y) {
g[++gl] = (node) {y, last[x], z};
last[x] = gl;
g[++gl] = (node) {x, last[y], z};
last[y] = gl;
return ;
}
int siz[N], n, K;
long long f[N][N];
inline void init(int u, int fa) {
siz[u] = 1;
for (int i = last[u]; i; i = g[i].next) {
int v = g[i].to;
if (v == fa) continue;
init(v, u);
siz[u] += siz[v];
}
return ;
}
#define Min(x, y) ((x<y)?x:y)
#define Max(x, y) ((x>y)?x:y)
inline void dfs(int u, int fa) {
memset(f[u], 128, sizeof(f[u]));
f[u][0] = f[u][1] = 0;
for (int i = last[u]; i; i = g[i].next) {
int v = g[i].to;
if (v == fa) continue;
dfs(v, u);
for (int j = Min(K, siz[u]); j >= 0; j--)
for (int k = 0; k <= Min(j, siz[v]); k++)
if (f[u][j-k] >= 0) {
long long val = 1ll*k*(K-k)*g[i].w + 1ll*(siz[v]-k)*(n-K+k-siz[v])*g[i].w;
f[u][j] = Max(f[u][j], f[u][j-k] + f[v][k] + val);
}
}
return ;
}
int main() {
n = gi(), K = gi();
for (int i = 1; i < n; i++)
add(gi(), gi(), gi());
init(1, 0);
dfs(1, 0);
printf("%lld\n", f[1][K]);
return 0;
}
洛谷 P3177 [HAOI2015]树上染色的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3177 [HAOI2015]树上染色(树上背包)
题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...
- BZOJ4033或洛谷3177 [HAOI2015]树上染色
BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...
- 洛谷 3177 [HAOI2015] 树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- 【洛谷】P3177 [HAOI2015]树上染色
懒得复制题面了直接传送门吧 分析 直接求点与点之间的距离感觉不是很好求,所以我们考虑换一个求法. 瞄了一眼题解 距离跟路径上边的长度有关,所以我们直接来看每一条边的贡献吧(这谁想得到啊) 对于每一条边 ...
- Luogu P3177 [HAOI2015]树上染色
一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...
- P3177 [HAOI2015]树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
随机推荐
- PHP数组在循环的时候修改本身的值
这样的修改并不是修改本身,$item就相当于赋值了一份数组中的值,就跟JAVA中的值方式传递值类型一样,我只是拿了你的值,并不是拿了你的内存地址,所已$item的改变,并不会影响数组 第一种方式就是直 ...
- Shiro——MD5加密
一.shiro默认密码的比对 通过 AuthenticatingRealm 的 credentialsMatcher 属性来进行的密码的比对 /**源码org.apache.shiro.realm.A ...
- Requests接口测试(二)
requests安装先看下怎么安装requests, 执行以下命令: pip install requests 安装好后如何导入requests模块呢? 如下所示: import requests 基 ...
- On the nightmare that is JSON Dates. Plus, JSON.NET and ASP.NET Web API
Ints are easy. Strings are mostly easy. Dates? A nightmare. They always will be. There's different c ...
- HttpUploader6.2-process版本
1.优化JS逻辑,在上传前先同步相同文件进度,提高多用户上传效率. 2.优化文件块保存逻辑,减少相同文件块的写入操作,减少服务器IO操作,提高上传效率. js变化: up6.js新增UrlQuer ...
- Java 正则表达式的实际应用
正则表达式最详细-----> | |目录 1匹配验证-验证Email是否正确 2在字符串中查询字符或者字符串 3常用正则表达式 4正则表达式语法 1匹配验证-验证Email是否正确 public ...
- 深度学习:原理与应用实践(张重生) - Caffe
如今,深度学习是国际上非常活跃.非常多产的研究领域,它被广泛应用于计算机视觉.图像分析.语音识别和自然语言处理等诸多领域.在多个领域上,深度神经网络已大幅超越了已有算法的性能. 本书是深度学习领域的一 ...
- 编写高质量代码改善C#程序的157个建议——建议42:使用泛型参数兼容泛型接口的不可变性
建议42:使用泛型参数兼容泛型接口的不可变性 让返回值类型返回比声明的类型派生程度更大的类型,就是“协变”.如: public Employee GetAEmployee(string name) { ...
- POJ2513 Colored Sticks(Trie+欧拉回路)
Description You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some ...
- Android Activity的切换动画(overridePendingTransition)
overridePendingTransition 1.平时Activity的切换是就是从中间弹出来,然后遮盖住之前的Activity.这种效果看到很多后就想给他换成其他的效果,如: 要显示的Acit ...