Classification week3: decision tree 笔记
华盛顿大学 machine learnign :classification week 3 笔记

第二步:

注:
其中 ,mistake 的计算方法:
给定一个节点的数据集M,对每个特征hi(x),根据特征hi(x)将节点的数据集M分类。
统计哪个类别占多数,记为多数类。
所有不在多数类里的数据都作为误判mistakes
classification error = (left_mistakes + right_mistakes) / num_data_points
第三步:建树
考虑到防止过拟合:

1. early stopping:
停止条件:

建树过程:
def decision_tree_create(data, features, target, current_depth = 0,
max_depth = 10, min_node_size=1,
min_error_reduction=0.0): remaining_features = features[:]
target_values = data[target] # Stopping condition 1: All nodes are of the same type.
if intermediate_node_num_mistakes(target_values) == 0:
return create_leaf(target_values) # Stopping condition 2: No more features to split on.
if remaining_features == []:
return create_leaf(target_values) # Early stopping condition 1: Reached max depth limit.
if current_depth >= max_depth:
return create_leaf(target_values) # Early stopping condition 2: Reached the minimum node size.
if reached_minimum_node_size(data, min_node_size):
return create_leaf(target_values) # Find the best splitting feature and split on the best feature.
splitting_feature = best_splitting_feature(data, features, target)
left_split = data[data[splitting_feature] == 0]
right_split = data[data[splitting_feature] == 1] # calculate error
error_before_split = intermediate_node_num_mistakes(target_values) / float(len(data))
left_mistakes = intermediate_node_num_mistakes(left_split[target])
right_mistakes = intermediate_node_num_mistakes(right_split[target])
error_after_split = (left_mistakes + right_mistakes) / float(len(data)) # Early stopping condition 3: Minimum error reduction
if error_before_split - error_after_split < min_error_reduction:
return create_leaf(target_values) remaining_features.remove(splitting_feature) # Repeat (recurse) on left and right subtrees
left_tree = decision_tree_create(left_split, remaining_features, target,
current_depth + 1, max_depth, min_node_size, min_error_reduction)
right_tree = decision_tree_create(right_split, remaining_features, target,
current_depth + 1, max_depth, min_node_size, min_error_reduction) return create_node(splitting_feature, left_tree, right_tree)
2. pruning
Total cost C(T) = Error(T) + λ L(T)

用建好的树预测数据:

def classify(tree, input):
# if the node is a leaf node.
if tree['is_leaf']:
return tree['prediction']
else:
# split on feature.
split_feature_value = input[tree['splitting_feature']]
if split_feature_value == 0:
return classify(tree['left'], input)
else:
return classify(tree['right'], input)
Classification week3: decision tree 笔记的更多相关文章
- OpenCV码源笔记——Decision Tree决策树
来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...
- [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...
- 【机器学习】决策树(Decision Tree) 学习笔记
[机器学习]决策树(decision tree) 学习笔记 标签(空格分隔): 机器学习 决策树简介 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个 ...
- 决策树学习笔记(Decision Tree)
什么是决策树? 决策树是一种基本的分类与回归方法.其主要有点事模型具有可得性,分类速度快.学习时,利用训练数据,根据损失函数最小化原则建立决策树模型:预测时,对新数据,利用决策树模型进行分类. 决策树 ...
- 机器学习技法笔记:09 Decision Tree
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decisi ...
- 机器学习技法笔记:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree
将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...
- [学习笔记] Uplift Decision Tree With KL Divergence
Uplift Decision Tree With KL Divergence Intro Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是 ...
- 【3】Decision tree(决策树)
前言 Decision tree is one of the most popular classification tools 它用一个训练数据集学到一个映射,该映射以未知类别的新实例作为输入,输出 ...
随机推荐
- python的dict如何排序
Python的内置dictionary数据类型是无序的,通过key来获取对应的value.可是有时我们需要对dictionary中 的item进行排序输出,可能根据key,也可能根据value来排 # ...
- Linux下sqlite3编程
---------------------------------------------------------------------------------------------------- ...
- 阿里云RDS(云数据库)之产品简介
参考阿里产品文档:https://docs.aliyun.com/?spm=5176.100054.3.1.ywnrMX#/pub/rds/product-introduce/overview& ...
- Spark Streaming揭秘 Day1-三大谜团
Spark Streaming揭秘 Day1 三大谜团 引子 在Spark的众多组件中,Streaming最接近企业级应用程序,学习Spark Streaming,是掌握大数据技术的一条捷径.今天是第 ...
- B8:中介者模式 Mediator
用一个中介对象来封装一系列的对象交互,中介者使得各对象不需要显示地相互引用,从而使其耦合松散,而且可以独立的改变它们之间的交互. 减少了各对象之间的耦合,使得可以独立的改变或复用各个Mediator或 ...
- java web程序中项目名的更改(http://localhost:8080/)后面的名字
在MyEclipse中的Web项目,如果想另换名称(Context-root)进行发布,可以在项目的属性中进行设置.设置路径如下: 右击项目XX(或选中项目XX,按快捷键Alt+Enter), 打开项 ...
- PJOI PKU Campus 2011 B:A Problem about Tree LCA 求随意点x为根的y的父节点
题目链接:点击打开链接 题意:给定n个点 m个询问 以下n-1行给定一棵树 m个询问 x y 问把树转成以x为根 y的父节点是谁 第一种情况lca==y那就是x的第 dep[x] - dep[y] - ...
- JSON——JavaScript 中的使用
由于JSON非常简单,很快就风靡Web世界,并且成为ECMA标准.几乎所有编程语言都有解析JSON的库,而在JavaScript中,我们可以直接使用JSON,因为JavaScript内置了JSON的解 ...
- SSH框架中POJO层, Dao层,Service层, Action层的功能理解
pojo层就是对应的数据库表的实体类(如User类). dao层,一般可以再分为***dao接口和***daoImpl实现类,如userDao接口和userDaoImpl实现类,接口负责定义数据库cu ...
- UnicodeEncodeError: ‘gbk’ codec can’t encode character u’\u200e’ in position 43: illegal multibyte sequence
[问题] python中已获取网页: http://blog.csdn.net/hfahe/article/details/5494895 的html源码,其时UTF-8编码的. 提取出其标题部分: ...