Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 15060   Accepted: 7270

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

利用这个性质判断点在矩形中哪个区域内!

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 5003
#define N 21
#define MOD 1000000
#define INF 1000000009
#define eps 0.00000001
/*
已知p1Xp2 >0 说明p1 在 p2的顺时针方向
盒子中所有界限 按升序给出,只需从前到后按顺序判断(一个点到边界线上面的顶点)叉乘(边界线向量) > 0 ?
那么将该点放入对应的盒子中!
*/
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y)
{
x = _x, y = _y;
}
Point operator-(const Point& b)const
{
return Point(x - b.x, y - b.y);
}
double operator^(const Point& b)const
{
return x*b.y - y*b.x;
}
}toy[MAXN];
struct Line
{
Point beg, end;
}a[MAXN];
int n, m, cnt[MAXN];
Point p1, p2;//左上角 右下角
int main()
{
bool f = false;
while (scanf("%d", &n), n)
{
memset(cnt, , sizeof(cnt));
if (!f)
f = true;
else
printf("\n");
scanf("%d%lf%lf%lf%lf", &m, &p1.x, &p1.y, &p2.x, &p2.y);
for (int i = ; i < n; i++)
{
scanf("%lf%lf", &a[i].beg.x, &a[i].end.x);
a[i].beg.y = p1.y, a[i].end.y = p2.y;
}
for (int i = ; i < m; i++)
{
scanf("%lf%lf", &toy[i].x, &toy[i].y);
int j;
for (j = ; j < n; j++)
{
if (((toy[i] - a[j].beg) ^ (a[j].end - a[j].beg)) > )
{
/*Point s = (toy[i] - a[j].beg),b = (a[j].end - a[j].beg);
cout <<":::::::"<< ((toy[i] - a[j].beg) ^ (a[j].end - a[j].beg)) << endl;*/
cnt[j]++;
break;
}
}
if (j == n)
cnt[n]++;
}
for (int i = ; i <= n; i++)
{
printf("%d: %d\n", i, cnt[i]);
}
//printf("\n");
}
return ;
}

TOYS POJ 2318 计算几何 叉乘的应用的更多相关文章

  1. TOYS - POJ 2318(计算几何,叉积判断)

    题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数.   分析:做的第一道计算几何题目....使用叉积判断方 ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  5. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  6. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  7. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

  8. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

  9. A - TOYS(POJ - 2318) 计算几何的一道基础题

    Calculate the number of toys that land in each bin of a partitioned toy box. 计算每一个玩具箱里面玩具的数量 Mom and ...

随机推荐

  1. astgo-官方功能更新日志

    2014年9月 2014-9-7:更新 1.安卓.苹果客户端添加字幕广告(点击字幕跳转打开网址) 2.安卓.苹果客户端添加公告推送功能 3.修正Astgo软交换管理平台修删除充值卡.用户账号,造成整个 ...

  2. PCB genesis加尾孔实现方法

    一.为什么增加尾孔呢 看一看下图在panel中增加尾孔的效果;如下图所示,主要有2点原因. 1.孔径大小测量 假设如果不增加尾孔,要检测孔径大小是否符合要求,那么QA检测会选择最后钻的孔进大小进行测量 ...

  3. eclipse----快速设置主题色

  4. codevs1557 热浪(堆优化dijkstra)

    1557 热浪  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 德克萨斯纯朴的民眾们这个夏 ...

  5. 【Leetcode146】LRU Cache

    问题描述: 设计一个LRU Cache . LRU cache 有两个操作函数. 1.get(key). 返回cache 中的key对应的 val 值: 2.set(key, value). 用伪代码 ...

  6. Hadoop Hive概念学习系列之hive的脚本执行(二十)

    相当一部分人,容易忽略hive脚本,其实,这在生产环境里,是非常重要的! $ hive -e "show tables" $ hive -e "show tables & ...

  7. Java继承体系中this的表示关系

    在继承关系下,父类中的this关键字并不总是表示父类中的变量和方法.this关键字的四种用法如前文所述,列举如下. 1) this(paras…); 访问其他的构造方法 2) this.xxx; 访问 ...

  8. Objective-C——关联对象

    动态语言 OC是一种动态语言,它的方法,对象的类型都是到运行的时候才能够确定的.所以这就使得OC存在了关联对象这一强大的机制. 关联对象 所谓关联对象,其实就是我们在运行时对一个已存在的对象上面绑定一 ...

  9. <form> 标签

    <form method="传送方式" action="服务器文件"> action :浏览者输入的数据被传送到的地方,比如一个PHP页面(save ...

  10. 解决sql server死锁

    -- 查询死锁 select request_session_id spid,OBJECT_NAME(resource_associated_entity_id) tableName from sys ...