Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 15060   Accepted: 7270

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

利用这个性质判断点在矩形中哪个区域内!

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 5003
#define N 21
#define MOD 1000000
#define INF 1000000009
#define eps 0.00000001
/*
已知p1Xp2 >0 说明p1 在 p2的顺时针方向
盒子中所有界限 按升序给出,只需从前到后按顺序判断(一个点到边界线上面的顶点)叉乘(边界线向量) > 0 ?
那么将该点放入对应的盒子中!
*/
struct Point
{
double x, y;
Point() {}
Point(double _x, double _y)
{
x = _x, y = _y;
}
Point operator-(const Point& b)const
{
return Point(x - b.x, y - b.y);
}
double operator^(const Point& b)const
{
return x*b.y - y*b.x;
}
}toy[MAXN];
struct Line
{
Point beg, end;
}a[MAXN];
int n, m, cnt[MAXN];
Point p1, p2;//左上角 右下角
int main()
{
bool f = false;
while (scanf("%d", &n), n)
{
memset(cnt, , sizeof(cnt));
if (!f)
f = true;
else
printf("\n");
scanf("%d%lf%lf%lf%lf", &m, &p1.x, &p1.y, &p2.x, &p2.y);
for (int i = ; i < n; i++)
{
scanf("%lf%lf", &a[i].beg.x, &a[i].end.x);
a[i].beg.y = p1.y, a[i].end.y = p2.y;
}
for (int i = ; i < m; i++)
{
scanf("%lf%lf", &toy[i].x, &toy[i].y);
int j;
for (j = ; j < n; j++)
{
if (((toy[i] - a[j].beg) ^ (a[j].end - a[j].beg)) > )
{
/*Point s = (toy[i] - a[j].beg),b = (a[j].end - a[j].beg);
cout <<":::::::"<< ((toy[i] - a[j].beg) ^ (a[j].end - a[j].beg)) << endl;*/
cnt[j]++;
break;
}
}
if (j == n)
cnt[n]++;
}
for (int i = ; i <= n; i++)
{
printf("%d: %d\n", i, cnt[i]);
}
//printf("\n");
}
return ;
}

TOYS POJ 2318 计算几何 叉乘的应用的更多相关文章

  1. TOYS - POJ 2318(计算几何,叉积判断)

    题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数.   分析:做的第一道计算几何题目....使用叉积判断方 ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  5. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  6. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  7. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

  8. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

  9. A - TOYS(POJ - 2318) 计算几何的一道基础题

    Calculate the number of toys that land in each bin of a partitioned toy box. 计算每一个玩具箱里面玩具的数量 Mom and ...

随机推荐

  1. linux安装 pip和setuptools

    安装 setuptools wget http://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11-py2.7.egg sh s ...

  2. codevs3327选择数字(单调队列优化)

    3327 选择数字  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond     题目描述 Description 给定一行n个非负整数a[1]..a[n].现 ...

  3. CF1073C Vasya and Robot

    CF题目难度普遍偏高啊-- 一个乱搞的做法.因为代价为最大下标减去最小的下标,那么可以看做一个区间的修改.我们枚举选取的区间的右端点,不难发现满足条件的左端点必然是不降的.那么用一个指针移一下就好了 ...

  4. Idea使用Maven搭建SpringMVC的HelloSpringMvc并配置插件Maven和Jetty

    这篇博文只是纯粹的搭建一个SpringMVC的项目, 并不会涉及里面配置文件该写些什么. 只是纯粹的搭建一个初始的Hello SpringMVC的项目. 废话不多说,上图. 1.  打开IDEA 并且 ...

  5. printf的字符型

    参  数 说  明 %s 按实际宽度输出一个字符串 %ms m指定宽度(不足时左补空格,大于时按实际宽度输出) %-ms 左对齐,不足时右补空格 %m.ns 输出占m个字符位置,其中字符数最多n个,左 ...

  6. android 中的Context(一)

    context的功能如此强大,它是activity的父类. public abstract class Context { ... public abstract Object getSystemSe ...

  7. day01_12/11/2016_Spring入门PPT

    s1 s2 s3 s4 s5 s6 s7 s8 IOC1 IOC2 入门编写1 入门编写2 入门编写3 入门编写4---心得

  8. 【LeetCode】467. Unique Substrings in Wraparound String

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  9. spring boot打包文件后,报错\No such file or directory

    现象: 一段代码: ClassLoader loader = XXXUtil.class.getClassLoader(); String jsFileName = loader.getResourc ...

  10. 转 方法区(method) )、栈区(stack)和堆区(heap)之JVM 内存初学

    JAVA的JVM的内存可分为3个区:堆(heap).栈(stack)和方法区(method) 堆区: 1.存储的全部是对象,每个对象都包含一个与之对应的class的信息.(class的目的是得到操作指 ...