batch normalization学习理解笔记
batch normalization学习理解笔记
最近在Andrew Ng课程中学到了Batch Normalization相关内容,通过查阅资料和原始paper,基本上弄懂了一些算法的细节部分,现在总结一下.
1. batch normalization算法思想的来源
不妨先看看原文的标题:Batch normalization:acclerating deep network training by reducing internal covariate shift.字面意思即:Batch Normalization算法是通过减小内部协变量偏移来加速深度神经网络训练.不难看出,作者明确指出Batch Normalization是一种加速深度神经网络训练的方法.什么原理呢,就是通过减小内部协变量偏移.原文中明确给出变量的定义:we refer to change in the distributions of internal nodes of a deep networks,in the course of training, as Internal Covariate Shift.其实意思就是神经网络内部layer的输入(即上一layer的输出)分布的变化.
Internal Covariate Shift的定义是相对于Covariate Shift而言的,Covariate Shift是指神经网络输入(X)分布发生改变的现象.大家都知道神经网络之所以具有泛化能力,一个基本的假设就是训练样本集与测试样本集是独立同分布的(iid),如果两者分布不同(或者说两者分布之间存在Covariate Shift现象),则网络的性能就没有了保证.而Internal Covariate Shift是将这一概念进行了扩展,神经网络内部上一层的输出传递给下一层作为输入,每一层的输入是否存在Covariate Shift现象呢,答案是显而易见的.因为在神经网络训练过程中,w,b等参数是一直进行调整的,导致网络的输出也是不断变化的,而这一层的输出将作为下一层的输入,即输入也是不断变化的,即神经网络内部也存在着Covariate Shift现象,这种神经网络内部的Covariate Shift现象,就称为Internal Covariate Shift.
Batch normalization的想法来源正式通过减小Internal Covariate Shift来加速网络训练.因为对于Covariate Shift现象,通过白化操作能起到改善作用,以此类推,将相似的操作引入神经网络内部,也能起到加速每一层训练的效果.
2. 如何进行Batch Normalization
首先想到了是同样在每层使用白化操作,但是白化操作有两个缺点:
- 一是白化计算量很大,因为白化过程中要计算随机向量的协方差矩阵,然后求逆运算(要使得输入向量各维度不相关),而且还要在每层中计算,这在深度神经网络中是十分费时的;
- 二是白化结果不能保证处处可微,不能保证后向梯度下降法的顺利进行.
因此文中进行了两个简化:
- 一是对输入向量的各个维度单独进行均值为0,方差为1的标准化处理,不进行去相关操作,这样就避免了协方差矩阵和矩阵求逆运算,这一操作也能起到加速训练的效果,已有文献作证.
- 二是结合深度神经网络训练常用的mini-batch,在计算均值和方差时利用一个mini-batch中的样本,而不是整个训练集中的样本.
同时,为了保证进行了归一化后的输入能够包含处理前的输入(即不会损失前层网络的训练成果),又添加了一个仿射变换,引入了两个网络学习的参数\(\gamma\)和\(\beta\).Batch Normalization的计算过程如下:

当\(\beta = \mu_B\),\(\gamma = \sqrt{\sigma^{2}_B+\varepsilon}\)时,\(y_i=x_i\),即Batch Normalization进行了恒等变换.
注意在测试过程中,当测试单个样本时,无法估计均值和方差,文中给出的解决办法是利用训练过程中mini-batch得到的均值和方差,求均值(指数加权平均)得到.具体的实现过程请参考原文献,此处不在累述.
3. Batch Normalization有那些作用
最主要的一点,也是原文中多次出现的就是加速网络训练,即达到相同的误差率,使用Batch Normalization可以大大减小所需要的迭代次数.
- 在原文试验中证实了,在原有网络结构中仅仅添加Batch Normalization,就可以大大加速网络的训练过程.个人认为有两点原因.一方面是因为经过Batch Normalization各层网络输入的均值和方差保持固定,因此后面的网络有了一个相对稳定的基础(Andrew Ng的观点),后面的网络减少了不断调整的过程;另外一点,经过归一化,输入向量各个维度保持了相同的尺度,这样也能加速后续网络的训练过程(类似于将原本椭圆状的损失函数变换为接近圆形的函数,即黑塞矩阵的条件数减小了)
- 另外,因为Batch Nomalization能够有效抑制梯度爆炸/消失问题,因此可以使用更大的学习率,用以加快训练.原文中对于使用更大的学习率进行了专门介绍:一般情况下,大的学习率会增加模型参数(W,b)的尺度,这在反向传播过程中会放大梯度,然后导致梯度爆炸问题.但是由于Batch Normalization能够使反向传播过程中梯度不受参数尺度的影响,因此可以有效防止这种问题的发生.对于一个尺度a,Batch Normalization过程具有以下特性:\[BN(Wu)=BN((aW)u)\]
其中W为模型参数,u为模型输入.上式的结果说明,Batch Normalization的结果不受模型参数尺度的影响,因为BN会对线性运算的输出进行归一化,即均值为0,方差为1,该过程会抵消掉a的影响.同时,对于传播过程,具有如下特性:\[\frac{\partial BN((aW)u)}{\partial u} = \frac{\partial BN(Wu)}{\partial u}\]
\[\frac{\partial BN((aW)u)}{\partial aW} = \frac{1}{a}\cdot\frac{\partial BN(Wu)}{\partial W}\]
上面第一个式子表明(用本节第一个等式替换即可得到),在反向传播过程中,梯度由本层向前一层传递时,梯度的大小不受模型参数尺度的影响.第二个式子表明,反向传播过程中,参数的尺度越大,其梯度越小,这可以抑制梯度增长过大.
其实,对于抑制深度神经网络中梯度消失/爆炸问题,采用的方法主要有使用relu激活函数,小心初始化模型参数等,BN同样提供了一种有力的工具.
原文中通过实验证明了BN可以有效防止非线性饱和问题,对于sigmoid激活函数,由于BN操作,可以避免输入落入梯度很小的两端范围内.
文中同样提到了BN自带一定的regularization作用,可以替代/减弱dropout的使用.这主要是因为平均是和方差为模型引入了随机误差,从而增添了不确定性.Andrew Ng认为,应该将BN的regulatization作用作为一种副作用,真正的正则化还是应该使用L2,dropout等通用方法.
batch normalization学习理解笔记的更多相关文章
- 深度学习(二十九)Batch Normalization 学习笔记
Batch Normalization 学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce 一.背景意义 ...
- Batch Normalization 学习笔记
原文:http://blog.csdn.net/happynear/article/details/44238541 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他 ...
- 神经网络Batch Normalization——学习笔记
训练神经网络的过程,就是在求未知参数(权重).让网络搭建起来,得到理想的结果. 分类-监督学习. 反向传播求权重:每一层在算偏导数.局部梯度,链式法则. 激活函数: sigmoid仅中间段趋势良好 对 ...
- ASCII, Unicode, UTF-8, 8进制, 16进制等各种编码学习理解笔记
字符编码的发展历史 Unicode和UTF-8有何区别? 在这个问题下的于洋的最高票回答中,比较完整地介绍了字符编码的发展历史,为了便于记忆,再次简要概括一番. 一个字节:最初一个字节的标准是混乱的, ...
- angular 学习理解笔记
原文:https://github.com/eoinkelly/notes/blob/master/angular/book-building-web-apps-w-angular/angular.m ...
- 转载--对batch normalization的理解
转载的大神的: https://www.cnblogs.com/guoyaohua/p/8724433.html 上边这个应该是抄的下边这个原文,但是上边的有重点标记 https://blog.csd ...
- Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...
- 神经网络之 Batch Normalization
知乎 csdn Batch Normalization 学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce ...
- 优化深度神经网络(三)Batch Normalization
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparam ...
随机推荐
- [Offer收割]编程练习赛37
热门号码 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<vector> ...
- 自定义typecho后台路径
如何自定义后台路径 Typecho 安装好后,默认的后台路径是 domain.com/admin/,为了提高安全性,我们允许以 domain.com/xxxx/ 的方式访问,其中 xxxx 是你自定义 ...
- WPF开发“Program '*' does not contain a static 'Main' method suitable for an entry point”错误
WPF项目编译时出现“Program '*' does not contain a static 'Main' method suitable for an entry point”错误, 解决方 ...
- Appium 环境搭建 - macOS
本文没有安装 Appium Desktop,Appium Server 直接在命令行中进行即可. Homebrew,macOS 包管理器: ruby -e "$(curl -fsSL htt ...
- FLP不可能原理
1. FLP impossibility背景 FLP Impossibility(FLP不可能性)是分布式领域中一个非常著名的结果,该结果在专业领域被称为“定理”,其地位之高可见一斑.该定理的论文是由 ...
- vue-cli 结构
. |-- build // 项目构建(webpack)相关代码 | |-- build.js // ...
- 文件系统VFS数据结构(超级块 inode dentry file)(收集整理)
Linux虚拟文件系统四大对象: 1)超级块(super block) 2)索引节点(inode) 3)目录项(dentry) 4)文件对象(file) 一个进程在对一个文件进行操作时各种对象的引用过 ...
- 网络教程(12) TCP协议
IP协议的限制 IP协议需要 datalink帧来包装它 Ethernet或者PPP 一般都有1500byte字节或者大小的限制 可能会出现的问题 Packet loss – retransmit R ...
- MySQL基础:安装
概述 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户 ...
- Web项目部署(Flask Angular2 Nginx)
独立弄了一个项目,也是锻炼自己的工程能力,使用了比较常用的框架,后端Flask,前端Angular2,采用前后端完全分离的方式,通过接口传输json,但是在具体部署过程中,查找资料较为零散,故整理如下 ...