Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

题解:

比较显然的动态规划问题.
定义 $g[i][j][k]$ 表示考虑第 $i$ 行时,考虑到第 $j$ 列且共用了 $k$ 次的答案.
$g[i][j][k]=max(g[i][j][k],g[i][j'][k-1]+calc(j'+1,j))$ 其中 $calc(i,j)$ 表示 $(i,j)$ 中出现次数更多的色块数,用前缀和维护一下即可.
定义 $f[i][j]$ 表示计算到第 $i$ 行,用了 $k$ 次机会的答案.
$f[i][j]=max(f[i][j],f[i-1][j-k]+g[i][m][k])$
最后统计一下答案即可.

Code:

#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 1200000
using namespace std;
int g[52][52][2600],f[52][2600],col[52][52];
char str[60];
void Max(int &a,int b){ if(b>a)a=b; }
int main(){
// setIO("input");
int n,m,T;
scanf("%d%d%d",&n,&m,&T);
for(int i=1;i<=n;++i) {
scanf("%s",str+1);
for(int j=1;j<=m;++j){
if(str[j]=='0')
col[i][j]=0;
else
col[i][j]=1;
col[i][j]+=col[i][j-1];
}
}
for(int i=1;i<=n;++i)
for(int k=1;k<=m;++k) //j次
for(int j=1;j<=m;++j)
for(int q=k-1;q<j;++q)
Max(g[i][j][k],g[i][q][k-1]+max(j-q-(col[i][j]-col[i][q]),col[i][j]-col[i][q]));
for(int i=1;i<=n;++i)
for(int j=1;j<=T;++j)
for(int k=0;k<=min(j,m);++k) Max(f[i][j],f[i-1][j-k]+g[i][m][k]);
int ans=0;
for(int i=1;i<=T;++i) Max(ans,f[n][i]);
printf("%d",ans);
return 0;
}

  

bzoj 1296: [SCOI2009]粉刷匠 动态规划的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  3. bzoj 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  4. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...

  5. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  6. 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  7. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  8. [SCOI2009]粉刷匠(动态规划,序列dp,背包)

    分别对每块木板做区间dp,设\(g[i][j]\)表示前i个格子,刷恰好j次,并且第i格是合法的最多合法的格子数.从前往后枚举断点来转移就好了. 这样处理再出来\(g[i][j]\)每一块木板i刷j次 ...

  9. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

随机推荐

  1. 3.SpringBoot整合Thymeleaf模板

    一.前言 SrpingBoot支持如JSP.Thymeleaf.FreeMarker.Mustache.Velocity等各种模板引擎,同时还为开发者提供了自定义模板扩展的支持. 使用嵌入式Servl ...

  2. Tp5 一次修改多个数据update

    //商城矿机设置 public function shop(){ if(!request()->isPost()){ return $this->fetch(); }else { $myd ...

  3. Laravel 5

    遍历数组@foreach($brand as $v) <a href='/brandss/seeshops?id={{$v->id}}'><img src="/pub ...

  4. 2018ICPC南京

    可能上一次秦皇岛拿了银,有了偶像包袱? 打的时候感觉状态不是很好. 第一题,让你每次将连续一段区间的石头都拿掉.. 然后让你做个博弈. 橘子一顿分析,认为k+1的倍数都是输. 这时,我们以及默认i+1 ...

  5. ZOJ 3717

    这题是二分+2SAT. 总结一下SAT题的特征.首先,可能会存在二选一的情况,然后会给出一些矛盾.据这些矛盾加边,再用SAT判定. 这一道题好像不能直接用printf("%0.3lf&quo ...

  6. 关于Linux静态库和动态库的分析

    关于Linux静态库和动态库的分析 关于Linux静态库和动态库的分析 1.什么是库 在windows平台和linux平台下都大量存在着库. 本质上来说库是一种可运行代码的二进制形式.能够被操作系统加 ...

  7. 【LeetCode OJ 136】Single Number

    题目链接:https://leetcode.com/problems/single-number/ 题目:Given an array of integers, every element appea ...

  8. Linux下把目录拷贝到全部同名目录的脚本

    需求:拷贝文件夹到Linux文件夹下.覆盖该Linux文件夹下全部同名文件夹 目标:Linux下,运行本脚本.输入目录名.就可以批量复制覆盖. 使用说明:         先把本脚本文件和要复制的文件 ...

  9. 6.26的二分(久违的AC)

    /* codevs 2765 很明显的二分 半年不写代码 超丑 怎么能忍, */ #include<cstdio> #include<algorithm> #define ma ...

  10. Android系统之Recovery移植教程 【转】

    本文转载自:http://luckytcl.blog.163.com/blog/static/14258648320130165626644/ recovery的移植,这方面的资料真实少之又少啊,谷歌 ...