CodeForces 1118F2. Tree Cutting (Hard Version)
题目简述:给定$n \leq 3 \times 10^5$个节点的树,其中一部分节点被染色,一共有$k$种不同的颜色。求将树划分成 $k$ 个不相交的部分的方案数,使得每个部分中除了未染色的节点以外的所有节点颜色相同,答案模$998244353$(质数)。
解:code
Step 1. 缩点
观察:为使相同颜色的节点处在同一个子树中,则包含这些节点的最小子树的所有节点必然会被划分在同一部分。
因此,在随意选择一个节点作为树的根节点后,每种颜色的所有节点的LCA(最近公共祖先)必然也与这些节点在同一部分。
同时,我们也得到了无解判定:如果某两种颜色的节点的最小子树具有相同部分,则必定无解。
在判断有解之后,我们可以把每种颜色对应的最小子树缩成一个节点,则问题就转化为:
【一个$n \leq 3\times 10^5$个节点的树,其中有$k$个节点是被标记的,问有多少种方法把树分成$k$部分,每部分包含恰好一个被标记的节点。】
Step 2. 动态规划
我们在缩点之后,只需要解决转化后的问题。
设$f[x][s]$表示以$x$为根的子树有多少种划分方式,使得$x$所在的部分 【未包含$s=0$ / 包含$s=1$】 一个被标记的节点。于是答案为$f[r][1]$,其中$r$是根节点。
1. 若$x$未被标记,则
1.1. 若$x$所在部分未包含被标记的节点,则对每个$x$的儿子节点$y$,若$y$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$y$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[y][0]+f[y][1]$种可能。由乘法原理,有
$$ f[x][0] = \prod_{y \in \text{son}(x)} (f[y][0]+f[y][1]). $$
1.2. 若$x$所在部分包含被标记的节点,则枚举$x$的儿子节点$y$,其所在部分包含被标记节点,有$f[y][1]$种可能;对其他儿子节点$z \neq y$,若$z$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$z$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[z][0]+f[z][1]$种可能。由乘法原理和加法原理,有
$$ f[x][1] = \sum_{y \in \text{son}(x)} f[y][1] \prod_{y \neq z \in \text{son}(x)} (f[z][0]+f[z][1]). $$
2. 若$x$被标记,则
2.1. $x$所在部分不可能未包含被标记节点,即
$$ f[x][0] = 0, $$
2.2. 若$x$所在部分包含被标记的节点,则对每个$x$的儿子节点$y$,若$y$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$y$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[y][0]+f[y][1]$种可能。(这与1.1.的讨论相同)由乘法原理,有
$$ f[x][1] = \prod_{y \in \text{son}(x)} (f[y][0]+f[y][1]). $$
总时间复杂度为$O(n)$。
CodeForces 1118F2. Tree Cutting (Hard Version)的更多相关文章
- Codeforces 1118F1 Tree Cutting (Easy Version) (简单树形DP)
<题目链接> 题目大意: 给定一棵树,树上的点有0,1,2三中情况,0代表该点无色.现在需要你将这棵树割掉一些边,使得割掉每条边分割成的两部分均最多只含有一种颜色的点,即分割后的两部分不能 ...
- Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】
任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...
- Tree Cutting (Hard Version) CodeForces - 1118F2 (树形DP,计数)
大意:给定树, 每个点有颜色, 一个合法的边集要满足删除这些边后, 每个连通块内颜色仅有一种, 求所有合法边集的个数 $f[x][0/1]$表示子树$x$中是否还有与$x$连通的颜色 对于每种颜色已经 ...
- Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)
https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...
- Codeforces 1118 F2. Tree Cutting (Hard Version) 优先队列+树形dp
题目要求将树分为k个部分,并且每种颜色恰好在同一个部分内,问有多少种方案. 第一步显然我们需要知道哪些点一定是要在一个部分内的,也就是说要求每一个最小的将所有颜色i的点连通的子树. 这一步我们可以将所 ...
- 解题:CF1118F2 Tree Cutting (Hard Version)
题面 好题不问Div(这是Div3最后一题,不得不说Mike真是强=.=) 首先同一个颜色的点的LCA要和它们在一个划分出的块里,那么我们先按颜色把所有点到它们的LCA的路径涂色,如果这个过程中出现了 ...
- 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)
Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...
- BZOJ3391: [Usaco2004 Dec]Tree Cutting网络破坏
3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 47 Solved: 37[ ...
- BZOJ 3391: [Usaco2004 Dec]Tree Cutting网络破坏( dfs )
因为是棵树 , 所以直接 dfs 就好了... ---------------------------------------------------------------------------- ...
随机推荐
- doT.js具体使用介绍
官网: http://olado.github.iodoT.js具体使用介绍 用法: {{= }} for interpolation {{ }} for evaluation {{~ }} for ...
- cocos2d-js添加百度MSSP插屏(通过jsb反射机制)
1.导入jar包.... 2.修改AndroidManifest.xml文件 添加: <meta-data android:name="BaiduMobAd_APP_ID" ...
- Hadoop实战-Flume之Source multiplexing(十五)
a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1.t ...
- Oozie-1-安装、配置 让Hadoop流动起来
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/wl101yjx/article/details/27881739 写在前面一: 本文总结 基于Had ...
- Java基础之I/O流
一.数据流的基本概念 数据流是一串连续不断的数据的集合,就象水管里的水流,在水管的一端一点一点地供水,而在水管的另一端看到的是一股连续不断的水流.数据写入程序可以是一段.一段地向数据流管道中写入数据, ...
- 【linux】在linux挂在windows共享目录
mount -t cifs -o username=用户名,password='密码',vers=2.0 //windows共享目录 /linux挂载目录
- 05-树8 File Transfer(25 point(s)) 【并查集】
05-树8 File Transfer(25 point(s)) We have a network of computers and a list of bi-directional connect ...
- HDU2457 DNA repair —— AC自动机 + DP
题目链接:https://vjudge.net/problem/HDU-2457 DNA repair Time Limit: 5000/2000 MS (Java/Others) Memory ...
- 加州小学grade1,学习计划
Visual vocabulary Grammar Spelling Maths Chapter 1 Patterns and Number SenseChapter 2Understanding A ...
- 虚拟参考站(VRS)
来源:https://www.sohu.com/a/149415053_391994 一.高精度定位 VRS是虚拟参考站(Virtual Reference Station)的简称.这项技术是CORS ...