题目链接

判断一张图中是否存在关于顶点1的负环:

可以用SPFA跑一遍,存在负环的情况就是点进队大于n次

因为在存在负环的情况下,SPFA会越跑越小,跑进死循环

在最差的情况下,存在的负环长度是“n+1个顶点”这么长

rt:

显然这是n个点长度,但不是环;

这就是一个环,n+1个点的长度;

所以代码很明了了,只需将一般SPFA改动一点饥渴
CODE:

#include<bits/stdc++.h>万能头,懒得打很多头文件
using namespace std;
//数据是骗人的,要开大..
const int maxn=;
//基本的变量或者数组都是:
queue<int > q;
bool visited[maxn];
int head[maxn],cnt,js[maxn],dis[maxn];
struct ppap {
int next,to,dis;
} edge[maxn];
int t,n,m;
//快读部分
int read() {
bool f=;
char ch;
int x=;
ch=getchar();
while(ch>''||ch<'') {
if(ch=='-')
f=!f;
ch=getchar();
}
while(ch<=''&&ch>='') {
x=x*+ch-'';
ch=getchar();
}
return !f?x:-x;
}
//链式前向星添边
void add(int from,int to,int dis) {
edge[++cnt].next=head[from];
head[from]=cnt;
edge[cnt].to=to;
edge[cnt].dis=dis;
}
//和常见spfa一样,在其中判断条件即可
bool SPFA() {
q.push();
visited[]=;
dis[]=;
js[]=;
while(!q.empty()) {
int u=q.front();
q.pop();
visited[u]=;
for(int i=head[u]; i; i=edge[i].next) {
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].dis) {
dis[v]=dis[u]+edge[i].dis;
if(visited[v]==) {
js[v]=js[u]+;
if(js[v]>n) return true;
visited[v]=;
q.push(v);
}
}
}
}
return false;
} int main() {
t=read();
while(t--) {
n=read(),m=read();
memset(head,,sizeof head);
memset(js,,sizeof js);
memset(edge,,sizeof edge);
memset(dis,0x3f,sizeof dis);
memset(visited,,sizeof visited);
//初始化
for(int i=,a,b,w; i<=m; i++) {
a=read(),b=read(),w=read();
add(a,b,w);
if(w>=)
add(b,a,w);
}
if(SPFA()) cout<<"YE5"<<"\n";
else cout<<"N0"<<"\n";
}
return ;//平淡的结束
}

评测记录

<题解>洛谷P3385 【模板】负环的更多相关文章

  1. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  2. 洛谷P3385判负环——spfa

    题目:https://www.luogu.org/problemnew/show/P3385 两种方法,dfs和bfs: 一开始写的dfs,要把dis数组初值赋成0,这样从一个连着负边的点开始搜: 在 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷P3385 【模板】负环(DFS求环)

    洛谷题目传送门 HNOI爆零前回刷模板题 非常不正经的题目,目前并没有合适的优秀算法,就算是大家公认的dfs(还是不要强行叫dfs-spfa吧,概念应该不一样,这就是暴力dfs松弛答案) 但是对于随机 ...

  5. 洛谷 P3385 【模板】负环

    P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M ...

  6. 洛谷 P3385 【模板】负环 题解

    P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入格式 第一行一个正整数T ...

  7. 洛谷—— P3385 【模板】负环

    题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 ...

  8. 题解【洛谷P3385】【模板】负环

    题目描述 暴力枚举/\(SPFA\)/\(Bellman-ford\)/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入输出格式 输入格式 第一行一个正整 ...

  9. 【模板】负环(SPFA/Bellman-Ford)/洛谷P3385

    题目链接 https://www.luogu.com.cn/problem/P3385 题目大意 给定一个 \(n\) 个点有向点权图,求是否存在从 \(1\) 点出发能到达的负环. 题目解析 \(S ...

  10. 【洛谷P3385】模板-负环

    这道题普通的bfs spfa或者ballen ford会T 所以我们使用dfs spfa 原因在于,bfs sfpa中每个节点的入队次数不定,退出操作不及时,而dfs则不会 既然,我们需要找负环,那么 ...

随机推荐

  1. QQ免费企业邮箱申请配置

    对于小企业来说,免费的企业邮箱是不错的选择,省去服务器费用和人员维护费用.在这里说一下,qq的免费企业邮箱.如果想搭建自己的企业邮局,请参考:centos extmail postfix nginx ...

  2. CentOS7.2 yum安装报错

    1.yum源repodata配置文件repomd.xml无法找到: Couldn't open file /mnt/cdrom/repodata/repomd.xml 先找到repomd.xml的路径 ...

  3. 初始Activity启动模式

    之前断断续续接触了解过Android activity,可是从没有应用过,这次因为一个严重缺陷再次认识Activity的启动模式,相比以前理解更深入了,以后使用检查也就更方便了. 任务栈(Task S ...

  4. WPF 控件树

    WPF控件树按照基类进行分类,记录下来便于编写自定义控件时查阅 RangeBase范围控件 Thumb拖到控件 TextBoxBase文本控件 ItemControl组控件 ContrentContr ...

  5. C# 枚举类型的描述信息获取

    新建一个控制台方法,写好自己的枚举类型: 如图: 在里面添加获取描述的方法: 具体源码: 链接:http://pan.baidu.com/s/1nv4rGkp 密码:byz8

  6. Android.mk模板

    此文列出Android.mk的常用模板(部分内容源于多篇他人博客,这里不具体指出),如有错漏,还请在评论中指出,后期持续更新   #链接第三方动态库,在和部分android源码的编译中验证不过 LOC ...

  7. codevs 2277 爱吃皮蛋的小明(水题日常)

    时间限制: 1 s  空间限制: 32000 KB  题目等级 : 白银 Silver 题目描述 Description 小明特别爱吃蛋,特别是皮蛋.他一次可以吃一个蛋或者两个蛋(整个吞下去),而且他 ...

  8. 手把手教你打造一个 Mac 风格的 Windows10(手动滑稽)

    Mark  https://www.sqlsec.com/2018/04/winmac.html 大佬写得很好,资瓷!! MyDock可能不是最新的,给出官方维护的网盘:https://pan.bai ...

  9. 【page-monitor 前端自动化 下篇】 实践应用

    转载文章:来源(靠谱崔小拽) 通过page-diff的初步调研和源码分析,确定page-diff在前端自动化测试和监控方面做一些事情.本篇主要介绍下,page-diff在具体的实践中的一些应用 核心d ...

  10. C++的反射

    写得挺不错,支持转帖下 C++语言本身是不支持反射的,但实际应用中总是会有将对象序列化的需求,总不可能C++不支持,我们就不用C++了,既然发明C++的大师们没有考虑这个,那我们只有自己动手了,毛主席 ...