Neko does MathsCodeForces - 1152C

  题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的k。

  首先让b>a,由lcm(a,b)=a*b/gcd(a,b),可以得出如果b%a==0,那么它们的最小公倍数就是b,此时的k就等于0。但如果b%a!=0的话,我们设g=gcd(a+k,b+k),那么就是有a+k=q1*g,b+k=q2*g,两者做差,那么b-a=(q2-q1)*g,由此我们可以知道g是b-a的因子。知道这个消息有什么用呢,我们可以在√(b-a) 内枚举g,这样g就是已知量了,我们设q3=(b-a)/g的话,q2=q1+q3,由lcm(a+k,b+k)=(a+k)*(b+k)/gcd(a+k,b+k),就有lcm(a+k,b+k)=q1*q2*g,那么lcm(a+k,b+k)=q1*(q1+q3)*g,只剩下一个未知量q1,而且要让lcm最小,q1也得最小,而q1=(a+k)/g,所以要让q1最小其实就是找一个最小的k使得(a+k)%g==0,那么k=(g-a%g)%g。这样的话枚举g,相应的k也就是出来了,再更新答案就好.

 #include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
int a,b,k;
ll ans;
ll lcm(ll a,ll b){
return a*b/__gcd(a,b);
}
void solve(int g)
{
int nk=(g-a%g)%g;
ll nans=lcm(1ll*(a+nk),1ll*(b+nk));
if(nans<ans||(nans==ans&&nk<k))
k=nk,ans=nans;
}
int main()
{
scanf("%d%d",&a,&b);
if(a>b){
ll t=a;a=b;b=t;
}
if(b%a==)
{
printf("0\n");
return ;;
}
int dis=b-a;
k=;
ans=lcm(a,b);
for(int i=;i*i<=dis;i++)
{
if(dis%i==)
{
solve(i);
solve(dis/i);
}
}
printf("%d\n",k);
return ;
}

数论推推推

Neko does Maths CodeForces - 1152C 数论欧几里得的更多相关文章

  1. L - Neko does Maths CodeForces - 1152C 数论(gcd)

    题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z ...

  2. ACM数论-欧几里得与拓展欧几里得

    ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...

  3. Codeforces 7C 扩展欧几里得

    扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(- ...

  4. ACM数论-欧几里得与拓展欧几里得算法

    欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...

  5. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  6. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  7. 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  8. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  9. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

随机推荐

  1. python-day7(正式学习)

    目录 数字类型内置方法 整形内置方法(int) 常用操作+内置方法 是否可变 浮点型内置方法(float) 常用操作+内置方法 是否可变 字符串内置方法 常用操作+内置方法 是否可变 数字类型内置方法 ...

  2. Validator自动验证与手动验证

    自动: public JResult projectAdd(@Valid Project project, BindingResult result) {Map<String,Object> ...

  3. word、ppt转换为pdf

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  4. python3爬虫图片验证码识别

    # 图片验证码识别 环境安装# sudo apt-get install -y tesseract-ocr libtesseract-dev libleptonica-dev# pip install ...

  5. mqtt协议实现 java服务端推送功能(一)安装

    最近有个新需求,需要通过java服务端把信息推送到mqtt服务器上,安卓和ios端从mqtt服务器上获取信息实现推送. 1. 本地需要安装Mosquitto服务器  http://mosquitto. ...

  6. arcgis之隐藏设置放大缩小按钮

    arcgis之隐藏设置放大缩小按钮 隐藏按钮: view.ui._removeComponents(['zoom']) 设置按钮: let zoom = new Zoom({ view: this.v ...

  7. vue入门:(事件处理)

    基本应用 修饰符 为什么要在HTML中使用事件监听 Demo 一.基本应用 1.通过v-on指令绑定事件,例如: <button v-on:click="">提交< ...

  8. css,使两个在同一行内的display:inline-block的div顶部对齐。

    两个都加上:vertical-align:top;

  9. 如何将spring源码导入到eclipse中

    如何将spring源码导入到eclipse中 1. 下载spring源码  可以在github官网中找到spring源码来下载,或者直接通过git下载,是一样的,这里演示 直接在github网站下载, ...

  10. 4.Struts2-OGNL

    /*ognl 是 strut2 特有的表达式,使用 ognl,struts2 就无需将对象手动放值进request等范围,页面(从值栈中)直接传值*/ OGNL <?xml version=&q ...