hdu 5187 zhx's contest (快速幂+快速乘)
zhx's contest
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3835 Accepted Submission(s): 1255
Problem Description
As one of the most powerful brushes, zhx is required to give his juniors n problems.
zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful way.
zhx defines a sequence {ai} beautiful if there is an i that matches two rules below:
1: a1..ai are monotone decreasing or monotone increasing.
2: ai..an are monotone decreasing or monotone increasing.
He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
zhx knows that the answer may be very huge, and you only need to tell him the answer module p.
Input
Multiply test cases(less than 1000). Seek EOF as the end of the file.
For each case, there are two integers n and p separated by a space in a line. (1≤n,p≤1018)
Output
For each test case, output a single line indicating the answer.
Sample Input
2 233 3 5
Sample Output
2 1
Hint
In the first case, both sequence {1, 2} and {2, 1} are legal. In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1
# include <iostream>
# include <cstring>
# include <cstdio>
using namespace std;
typedef long long LL;
LL p,mod;LL n;
inline LL quick_mul(LL x,LL y,LL MOD){
x=x%MOD,y=y%MOD;
return ((x*y-(LL)(((long double)x*y+0.5)/MOD)*MOD)%MOD+MOD)%MOD;
}
LL qmod(LL a, LL b)
{
LL ans = 1, pow = a%mod;
while(b)
{
if(b&1) ans = (quick_mul(ans,pow,mod))%mod;
pow = (quick_mul(pow,pow,mod))%mod;
b >>= 1;
}
return ans;
}
int main()
{
while(~scanf("%lld%lld",&n,&p))
{
mod=p;
LL ans=qmod(2,n);
ans=(ans-2+mod)%mod;
printf("%lld\n",ans);
}
return 0;
}
hdu 5187 zhx's contest (快速幂+快速乘)的更多相关文章
- hdu 5187 zhx's contest [ 找规律 + 快速幂 + 快速乘法 || Java ]
传送门 zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- hdu 5187 zhx's contest
题目分析如果n=1,答案是1,否则答案是2n−2. 证明:ai肯定是最小的或者最大的.考虑另外的数,如果它们的位置定了的话,那么整个序列是唯一的. 那么ai是最小或者最大分别有2n−1种情况,而整个序 ...
- HDU 5187 zhx's contest 快速幂,快速加
题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5187 bc(中文): http://bestcoder.hdu.edu.cn/contes ...
- HDU - 5187 zhx's contest(快速幂+快速乘法)
作为史上最强的刷子之一,zhx的老师让他给学弟(mei)们出n道题.zhx认为第i道题的难度就是i.他想要让这些题目排列起来很漂亮. zhx认为一个漂亮的序列{ai}下列两个条件均需满足. 1:a1. ...
- HDU 4549 矩阵快速幂+快速幂+欧拉函数
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 取模性质,快速幂,快速乘,gcd和最小公倍数
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...
- HDU - 5187 - zhx's contest (高速幂+高速乘)
zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- HDU 5607 graph 矩阵快速幂 + 快速幂
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...
随机推荐
- 剑指offer35:数组中的逆序对
1 题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%10 ...
- 代理模式与动态代理之JDK实现和CGlib实现
静态代理 静态代理中的代理类和委托类会实现同一接口或是派生自相同的父类. 由业务实现类.业务代理类 两部分组成.业务实现类 负责实现主要的业务方法,业务代理类负责对调用的业务方法作拦截.过滤.预处理, ...
- java都13了, 8的新特性你还没不会用吗
前言 java13都已经来了,很多同学还停留在使用java5的东西.如果在日常开发中没有使用上java8的一些新特性或者不会用.这篇文章对你可能有帮助. lambda表达式 介绍 lambda表达式是 ...
- 《深入理解 Java 虚拟机》学习 -- 类加载机制
<深入理解 Java 虚拟机>学习 -- 类加载机制 1. 概述 虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的 J ...
- 怎样监听HTTP请求的发出与完成
1. 监听HTTP请求发出的事件是: xhr.onloadstart 2. 监听HTTP请求结束的事件是: xhr.onloadend xhr.onloadstart = function() { / ...
- MyEclipse10.0 采用插件方式安装 SVN
一.到官方上下载svn1.8.3,下载后的文件名叫site-1.8.3.zip 地址:http://subclipse.tigris.org/servlets/ProjectDocumentList? ...
- 初学java4 循环的使用
for循环 for(初始条件;循环终止条件;循环结束后所执行代码){ 循环体 } while循环 while(循环终止条件){ 循环体 } do while循环 do{ }while(循环终止条件);
- 【C++】如何提高Cache的命中率,示例
参考链接 https://stackoverflow.com/questions/16699247/what-is-a-cache-friendly-code 只是堆积:缓存不友好与缓存友好代 ...
- ASP.NET如何接收清楚缓存的通知
1 如果使用cache的add方法或者接受CacheItemPriority值得Insert方法重载接收通知,可以提供CacheItemRemovedCallBack对象,选择在清除对象时接收通知 u ...
- 简单的flask对象
简单的flask对象 # coding:utf-8 # 导入Flask类 from flask import Flask #Flask类接收一个参数__name__ app = Flask(__nam ...