hdu4338 Simple Path
Everybody knows that totalfrank has absolutely no sense of direction. Getting lost in the university or nearly supermarket is very common for him. We always worry about whether he can find his way back into our sweet base whenever he goes out alone for his class. In general, if totalfrank get lost again, we need to check his starting point and destination just in order to find out where he could be (you know this task is very common for us).
Unfortunately, poor totalfrank sometimes forgot taking his mobile phone, when this situation happens, we can’t get in touch with him. But it is so lucky that totalfrank can remember places where he had gone before in his trip from his starting point and destination at this trip so that he won’t go to such place again (he can’t remember places which he had gone during his previous trip). As we are all familiar with map, we can find out which place he couldn’t be.
However, totalfrank can always get lost, doing this same boring work makes us sleepy. So we ask totalfrank for all possible starting point and destination for him, and try to find out how many places he wouldn’t be when he chooses any pair of starting point and destination. Here comes the problem, since our university’s map is so complex (there can be many buildings which can be considered as points in our university, some pair of these point has a way while others hasn’t), we need a program to help us work out this problem.
#pragma comment(linker, "/STACK:102400000,102400000")
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
const int MAXN=1e5+; struct edge{
int u,v,n;
}e1[MAXN*],e2[MAXN*]; int f1[MAXN],f2[MAXN*],es1,es2;
int n,m,q,tu,tv; void addedge1(int u,int v){
e1[es1].u=u,e1[es1].v=v,e1[es1].n=f1[u],f1[u]=es1++;
} void addedge2(int u,int v){
e2[es2].u=u,e2[es2].v=v,e2[es2].n=f2[u],f2[u]=es2++;
} int p[MAXN*]; int find(int x){return x==p[x]?x:p[x]=find(p[x]);} void merge(int x,int y){p[find(x)]=find(y);} int sum[MAXN*],tsum[MAXN*],dis[MAXN];
int lca_f[MAXN*],lca_b[MAXN*],lca_p[MAXN*],rid;
int dminv[MAXN*][],dminid[MAXN*][]; void dp(int u,int f,int dd,int tot){
dis[u]=dd,tsum[u]=tot+sum[u];
lca_f[++rid]=u,lca_b[rid]=dd,lca_p[u]=rid;
for(int i=f2[u];i!=-;i=e2[i].n){
int v=e2[i].v;
if(v==f)continue;
dp(v,u,dd+,tot+sum[u]);
lca_f[++rid]=u,lca_b[rid]=dd;
}
} void makermq(){
rid=;
dp(,-,,);
for(int i=;i<=rid;i++)dminv[i][]=lca_b[i],dminid[i][]=i;
int maxj=(int)(log(rid+1.0)/log(2.0));
for(int j=;j<=maxj;j++){
int maxi=rid+-(<<j);
for(int i=;i<=maxi;i++){
if(dminv[i][j-]<dminv[i+(<<(j-))][j-]){
dminv[i][j]=dminv[i][j-];
dminid[i][j]=dminid[i][j-];
}else{
dminv[i][j]=dminv[i+(<<(j-))][j-];
dminid[i][j]=dminid[i+(<<(j-))][j-];
}
}
}
} int lca(int x,int y){
if(lca_p[x]>lca_p[y])std::swap(x,y);
x=lca_p[x],y=lca_p[y];
int k=(int)(log(y-x+1.0)/log(2.0));
int xx=dminv[x][k]<dminv[y+-(<<k)][k]?dminid[x][k]:dminid[y+-(<<k)][k];
return lca_f[xx];
} int dfn[MAXN],low[MAXN],cid[MAXN],stk[MAXN],col[MAXN],top,ind,cls,tmp;
int cal[MAXN*]; void dfs_cutpnt(int u,int f,int root){
dfn[u]=low[u]=++ind;
int cnt=;
int flag=;
for(int i=f1[u];i!=-;i=e1[i].n){
int v=e1[i].v;
if(v==f&&!flag){flag=;continue;}
if(!dfn[v]){
cnt++;
dfs_cutpnt(v,u,root);
if(low[v]<low[u])low[u]=low[v];
if(u==root&&cnt>&&cid[u]==)cid[u]=++cls,sum[cls]=;
else if(u!=root&&low[v]>=dfn[u]&&cid[u]==)cid[u]=++cls,sum[cls]=;
}else if(dfn[v]<low[u])low[u]=dfn[v];
}
} void dfs_tarjan(int u,int f){
low[u]=dfn[u]=++ind;
stk[++top]=u;
int flag=;
for(int i=f1[u];i!=-;i=e1[i].n){
int v=e1[i].v;
if(v==f&&!flag){flag=;continue;}
if(!dfn[v]){
dfs_tarjan(v,u);
if(low[v]<low[u])low[u]=low[v];
if(low[v]>=dfn[u]){
sum[++cls]=,col[u]=cls;
do{
tmp=stk[top--],col[tmp]=cls,++sum[cls];
if(cid[tmp]){addedge2(cid[tmp],cls);addedge2(cls,cid[tmp]);merge(cid[tmp],cls);}
}while(tmp!=v);
if(cid[u]){addedge2(cid[u],cls);addedge2(cls,cid[u]);merge(cid[u],cls);}
}
}else if(dfn[v]<low[u])low[u]=dfn[v];
}
} int size; void makegraph(){
//找割点
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
memset(cid,,sizeof cid);
cls=ind=;
//找双联通分量并建图
for(int i=;i<n;i++)dfs_cutpnt(i,-,i);
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
memset(col,,sizeof col);
top=ind=;
for(int i=;i<n;i++)dfs_tarjan(i,-);
//将森林补成树,便于dp以及查询
memset(cal,,sizeof cal);
for(int i=;i<=cls;i++){
if(cal[find(i)]==){
cal[find(i)]=;
addedge2(,i);
}
}
} int main(){
//freopen("test.in","r",stdin);
int cas=;
while(scanf("%d%d",&n,&m)!=EOF){
memset(f1,-,sizeof f1);
memset(f2,-,sizeof f2);
for(int i=;i<=*n;i++)p[i]=i;
es1=es2=; for(int i=;i<m;i++){
scanf("%d%d",&tu,&tv);
addedge1(tu,tv);
addedge1(tv,tu);
} //转化成双联通与割点相邻的图
makegraph();
//lca转化成rmq
makermq(); printf("Case #%d:\n",cas++);
scanf("%d",&q);
while(q--){
scanf("%d%d",&tu,&tv);
//起点和终点重合
if(tu==tv)printf("%d\n",n-);
else{
//如果是割点的话就一定要用割点对应的点,因为割点会被染成不同的颜色!
tu=cid[tu]?cid[tu]:col[tu];
tv=cid[tv]?cid[tv]:col[tv];
//孤立点或者不在同一个联通块中
if(tu==||tv==||find(tu)!=find(tv)){
printf("%d\n",n);
}else{
int fa=lca(tu,tv);
int ans=tsum[tu]+tsum[tv]-*tsum[fa]+sum[fa];
ans-=(dis[tu]+dis[tv]-*dis[fa]);
printf("%d\n",n-ans);
}
}
}
printf("\n");
}
return ;
}
hdu4338 Simple Path的更多相关文章
- Simple Path Data Resources that I Add to Every WPF and Silverlight Project
Here’s a little time saver. I sort of have a routine that I go through when I create a new WPF proje ...
- Each path can be reduced to a simple path
Recently, I made a small conclusion, but I found it is found and well-founded in some textbook. So I ...
- 2019.01.22 zoj3583 Simple Path(并查集+枚举)
传送门 题意简述:给出一张图问不在从sss到ttt所有简单路径上的点数. 思路: 枚举删去每个点然后把整张图用并查集处理一下,同时不跟sss和ttt在同一个连通块的点就是满足要求的点(被删去的不算). ...
- CF 954H Path Counting
H. Path Counting time limit per test 5 seconds memory limit per test 256 megabytes input standard in ...
- linux perf - 性能测试和优化工具
Perf简介 Perf是Linux kernel自带的系统性能优化工具.虽然它的版本还只是0.0.2,Perf已经显现出它强大的实力,足以与目前Linux流行的OProfile相媲美了. Perf 的 ...
- hdu2586 LCA
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- Javascript并发模型和事件循环
Javascript并发模型和事件循环 JavaScript的"并发模型"是基于事件循环的,这个并发模型有别于Java的多线程, javascript的并发是单线程的. Javas ...
- HDU2586How far away ?
http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) ...
- Codeforces Round #381 (Div. 2)D. Alyona and a tree(树+二分+dfs)
D. Alyona and a tree Problem Description: Alyona has a tree with n vertices. The root of the tree is ...
随机推荐
- python---多线程与多进程
一. 单进程多线程 1. 使用的模块是Threading.使用join()函数进行阻塞. from pdf2txt import pdfTotxt1, pdfTotxt2 import xlrd im ...
- ng-table
需要的文件: angular.js ng-table.js ng-table.css bootrasp.css 注入依赖: var app = angular.module('app', [ 'ngT ...
- python socket 网络编程selector用法 (实用)
Server端: import socketimport selectors class Server(object):def init(self,sel,sock):self.sel = selse ...
- 创建自己的docker基础镜像
1.下载镜像 centos7 docker pull centos: 2.创建容器加载镜像 docker run -i -t --name centos7 centos: docker run 参数详 ...
- day 30 客户端获取cmd 命令的步骤
import subprocessimport structimport jsonfrom socket import *server=socket(AF_INET,SOCK_STREAM)serve ...
- C:基础知识
基础知识 一.基础转义字符 1.常用的转义字符 \n 回车换行 (10) \” 双引号 \t 横向跳格(9) \0 空字符(0) \v 竖向跳格 (11) \a 响铃(7) \b 退格 (8) \ ...
- python 时间格式化
2018-10-25 17:49:51 监控软件 原始 2018-10-2517:49:51 切割后 2018/10/25 17:49:51 格式化后 shijian = ' '.join(respo ...
- Java Sublime 环境配置
1.编辑JavaC.sublime-build文件 用winrar 打开 Sublime的安装目录下的Packages文件夹下的Java.sublime-package文件, 双击JavaC.subl ...
- js编写轮播图,广告弹框
1.轮播图 js编写轮播图,需要用到setInterval(计时器):先给一个div,里面放轮播图的图片,将轮播图的图片明明为相同样式的:如:banner1.jpg,banner2.jpg,banne ...
- Linux下的shell与make
Linux下的shell与make 一.shell 1.1 什么是shell ● 用户与Linux的接口 ● 命令解释器 ● 支持多用户 ● 支持复杂的编程语言 ● Shell有很多种,如:csh,t ...