[转]BLAS简介
BLAS(Basic Linear Algebra Subprograms)是一组线性代数计算中通用的基本运算操作函数集合[1] 。BLAS Technical (BLAST) Forum负责规范BLAS函数接口, 并在网站[1]公布一个由Fortran语言编写的BLAS库。这个Fortran版BLAS库通常被称为BLAS参考库(the reference implementation)。 BLAS参考库使用的算法能高效地给出正确的结果,但仍有许多优化潜力。要想获得更高的计算效率,可以使用优化的BLAS库。
BLAS是LAPACK的子集,LAPACK是更丰富的线性代数程序库。
BLAS库的实现
向量和矩阵运算是数值计算的基础,BLAS库通常是一个软件计算效率的决定性因素。除了BLAS参考库以外,还有多种衍生版本和优化版本。这些BLAS库实现中,有些仅实现了其它编程语言的BLAS库接口,有些是基于BLAS参考库的Fortran语言代码翻译成其它编程语言,有些是通过二进制文件代码转化方法将BLAS参考库转换成其它变成语言代码,有些是在BLAS参考库的基础上,针对不同硬件(如CPU,GPU)架构特点做进一步优化[4][5]。
ATLAS BLAS[3]
The ATLAS (Automatically Tuned Linear Algebra Software) project is an ongoing research effort focusing on applying empirical techniques in order to provide portable performance. At present, it provides C and Fortran77 interfaces to a portably efficient BLAS implementation, as well as a few routines from LAPACK.
OpenBLAS[4]
OpenBLAS is an optimized BLAS library based on GotoBLAS2 1.13 BSD version.
Intel® Math Kernel Library[5]
Intel® Math Kernel Library (Intel® MKL) accelerates math processing and neural network routines that increase application performance and reduce development time. Intel MKL includes highly vectorized and threaded Linear Algebra, Fast Fourier Transforms (FFT), Neural Network, Vector Math and Statistics functions. The easiest way to take advantage of all of that processing power is to use a carefully optimized math library. Even the best compiler can’t compete with the level of performance possible from a hand-optimized library. If your application already relies on the BLAS or LAPACK functionality, simply re-link with Intel MKL to get better performance on Intel and compatible architectures.
cuBLAS[6]
The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) library is a GPU-accelerated version of the complete standard BLAS library that delivers 6x to 17x faster performance than the latest MKL BLAS.
clBLAS[7]
This repository houses the code for the OpenCL™ BLAS portion of clMath. The complete set of BLAS level 1, 2 & 3 routines is implemented.
BLIS[10]
BLIS is a portable software framework for instantiating high-performance BLAS-like dense linear algebra libraries. The framework was designed to isolate essential kernels of computation that, when optimized, enable optimized implementations of most of its commonly used and computationally intensive operations. Select kernels have been optimized for the AMD EPYCTM processor family. The optimizations are done for single and double precision routines.
BLAS 函数
BLAS库中函数根据运算对象的不同,分为三类:
- Level 1 函数处理单一向量的线性运算以及两个向量的二元运算。Level 1 函数最初出现在1979年公布的BLAS库中。
- Level 2 函数处理矩阵与向量的运算,同时也包含线性方程求解计算。 Level 2 函数公布于1988年。
- Level 3 函数包含矩阵与矩阵运算。Level 3 函数发表于1990年。
BLAS 函数接口命名规范
Level 1 接口函数名称由“前缀+操作简称“组成
例如 SROTG函数,其中
- S -- 标明矩阵或向量中元素数据类型的前缀;
- ROTG -- 向量运算简称.
前缀: 矩阵或向量内元素的数据类型,有以下几种: - S - 单精度浮点数
- D - 双精度浮点数
- C - 复数
- Z - 16位复数
Level 2 和 Level 3函数涉及矩阵运算,接口函数名称由”前缀 + 矩阵类型 + 操作简称“组成。
例如: SGEMV
- S -- 标明矩阵或向量中元素数据类型的前缀;
- GE -- 矩阵类型
- MV -- 向量或矩阵运算简称
BLAS库中使用的矩阵类型有以下几种: - GE - GEneral 稠密矩阵
GB - General Band 带状矩阵
- SY - SYmmetric 对称矩阵
- SB - Symmetric Band 对称带状矩阵
SP - Symmetric Packed 压缩存储对称矩阵
- HE - HEmmitian Hemmitian矩阵,自共轭矩阵
- HB - Hemmitian Band 带状Hemmitian矩阵
HP - Hemmitian Packed 压缩存储Hemmitian矩阵
- TR - TRiangular 三角矩阵
- TB - Triangular Band 三角带状矩阵
TP - Triangular Packed 压缩存储三角矩阵
Level 1
PROTG
- Description: generate plane rotation
- Syntax: PROTG( A, B, C, S)
- P: S(single float), D(double float)
PROTMG
- Description: generate modified plane rotation
- Syntax: PROTMG( D1, D2, A, B, PARAM)
- P: S(single float), D(double float)
PROT
- Description: apply plane rotation
- Syntax: PROT( N, X, INCX, Y, INCY, C, S)
- P: S(single float), D(double float)
PROTM
- Description: apply modified plane rotation
- Syntax: PROTM( N, X, INCX, Y, INCY, PARAM)
- P: S(single float), D(double float)
PSWAP
- Description: swap x and y
- Syntax: PSWAP( N, X, INCX, Y, INCY)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PSCAL
- Description: x = ax
- Syntax: PSCAL( N, ALPHA, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex16), CS, ZD
PCOPY
- Description: copy x into y
- Syntax: PCOPY( N, X, INCX, Y, INCY)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PAXPY
- Description: copy x into y
- Syntax: PAXPY( N, ALPHA, X, INCX, Y, INCY)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PDOT
- Description: dot product
- Syntax: PDOT( N, X, INCX, Y, INCY)
- P: S(single float), D(double float), DS
PNRM2
- Description: Euclidean norm
- Syntax: PNRM2( N, X, INCX)
- P: S(single float), D(double float), CS, ZD
PASUM
- Description: sum of absolute values
- Syntax: PASUM( N, X, INCX)
- P: S(single float), D(double float), CS, ZD
IXAMAX
- Description: index of max absolute value
- Syntax: IXAMAX( N, X, INCX)
Level 2
PGEMV
- Description: matrix vector multiply
- Syntax: PGEMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PGBMV
- Description: banded matrix vector multiply
- Syntax: PGEMV( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PSYMV
- Description: symmetric matrix vector multiply
- Syntax: PGEMV( TRANS, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
- P: S(single float), D(double float),
PSBMV
- Description: symmetric banded matrix vector multiply
- Syntax: PGEMV( TRANS, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
- P: S(single float), D(double float),
PSPMV -
- Description: symmetric packed matrix vector multiply
- Syntax: PGEMV( TRANS, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
- P: S(single float), D(double float),
PTRMV
- Description: triangular matrix vector multiply
- Syntax: PTRMV( UPLO, TRANS, DIAG, A, LDA, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTBMV -
- Description: triangular banded matrix vector multiply
- Syntax: PTRSV( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTPMV
- Description: triangular packed matrix vector multiply
- Syntax: PTPMV( UPLO, TRANS, DIAG, N, AP, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTRSV
- Description: solving triangular matrix problems
- Syntax: PTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTBSV
- Description: solving triangular banded matrix problems
- Syntax: PTBSV( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTPSV
- Description: solving triangular packed matrix problems
- Syntax: PGER( UPLO, TRANS, DIAG, N, AP, X, INCX)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PGER
- Description: performs the rank 1 operation A := alphaxy' + A
- Syntax: PGER( M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
- P: S(single float), D(double float)
PSYR
- Description: performs the symmetric rank 1 operation A := alphaxx' + A
- Syntax: PSYR( UPLO, N, ALPHA, X, INCX, A, LDA)
- P: S(single float), D(double float)
PSPR -
- Description: symmetric packed rank 1 operation A := alphaxx' + A
- Syntax: PSPR( UPLO, N, ALPHA, X, AP)
- P: S(single float), D(double float)
PSYR2
- Description: performs the symmetric rank 2 operation, A := alphaxy' + alphayx' + A
- Syntax: PSYR2( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
- P: S(single float), D(double float)
PSPR2
- Description: performs the symmetric packed rank 2 operation, A := alphaxy' + alphayx' + A
- Syntax: PSPR2( UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
- P: S(single float), D(double float)
Level 3
PGEMM
- Description: matrix matrix multiply
- Syntax: PGEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PSYMM
- Description: symmetric matrix matrix multiply
- Syntax: PTRSM( SIDE, UPLD, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PSYRK
- Description: symmetric rank-k update to a matrix
- Syntax: PSYR2K( UPLD, TRANSA, N, K, ALPHA, A, LDA, BETA, C, LDC)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PSYR2K
- Description: symmetric rank-2k update to a matrix
- Syntax: PSYR2K( UPLD, TRANSA, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTRMM -
- Description: triangular matrix matrix multiply
- Syntax: PTRMM( SIDE, UPLD, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
- P: S(single float), D(double float), C(complex), Z(complex*16)
PTRSM
- Description: solving triangular matrix with multiple right hand sides
- Syntax: PTRSM( SIDE, UPLD, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
- P: S(single float), D(double float), C(complex), Z(complex*16)
其它矩阵计算库
SparseLib++ --- Numerical Sparse Matrix Classes in C++
http://math.nist.gov/sparselib
SparseLib++ is a C++ class library for efficient sparse matrix computations across various computational platforms. The software package consists of matrix objects representing several sparse storage formats currently in use (in this release: compressed row, compressed column and coordinate formats), providing basic functionality for managing sparse matrices, together with
efficient kernel mathematical operations (e.g. sparse matrix-vector multiply).
Routines based on the Sparse BLAS are used to enhance portability and performance. Included in the package are various preconditioners commonly used in iterative solvers for linear systems of equations. The focus is on computational support for iterative methods, but the sparse matrix objects
presented here can be used on their own.
SparseLib++最新版是 v. 1.7. 最近更新时间是2008年(已经好久没更新了)
SparseLib++ 1.7 使用了complex.h等C99特性。 使用g++ v. 4.0.1以上版本能编译。Visual Studio对不支持所有C99特性,不能直接使用VS编译SparseLib++ 1.7(可以通过mingw编译)
PETSc
https://www.mcs.anl.gov/petsc/
PETSc, pronounced PET-see (the S is silent), is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. It supports MPI, and GPUs through CUDA or OpenCL, as well as hybrid MPI-GPU parallelism. PETSc (sometimes called PETSc/Tao) also contains the Tao optimization software library.
SuitSparse
http://faculty.cse.tamu.edu/davis/suitesparse.html
SuiteSparse is a suite of sparse matrix algorithms,
另外, 网页[8]上列举了许多矩阵计算库
参考文献
[1] blas官网:http://www.netlib.org/blas/
[2] https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
[3] http://math-atlas.sourceforge.net/
[4] http://www.openblas.net/
[5] https://software.intel.com/en-us/intel-mkl/
[6] https://developer.nvidia.com/cublas
[7] https://github.com/clMathLibraries/clBLAS
[8] https://scicomp.stackexchange.com/questions/351/recommendations-for-a-usable-fast-c-matrix-library
[9] https://martin-thoma.com/solving-linear-equations-with-gaussian-elimination/
[10] https://developer.amd.com/amd-cpu-libraries/blas-library/
附录:相关链接
openblass的Github:https://github.com/xianyi/OpenBLAS/wiki/User-Manual
openblass作者的一次讲座:https://www.leiphone.com/news/201704/Puevv3ZWxn0heoEv.html
[转]BLAS简介的更多相关文章
- CUDA ---- CUDA库简介
CUDA Libraries简介 上图是CUDA 库的位置,本文简要介绍cuSPARSE.cuBLAS.cuFFT和cuRAND,之后会介绍OpenACC. cuSPARSE线性代数库,主要针对稀疏矩 ...
- BLAS快速入门
一.简介 BLAS[Basic Linear Algebra Subprograms,基础线性代数程序集]是一个应用程序接口[API]标准,用于规范发布基础基础线性代数操作的数值库[常用于向量或矩阵计 ...
- ASP.NET Core 1.1 简介
ASP.NET Core 1.1 于2016年11月16日发布.这个版本包括许多伟大的新功能以及许多错误修复和一般的增强.这个版本包含了多个新的中间件组件.针对Windows的WebListener服 ...
- MVVM模式和在WPF中的实现(一)MVVM模式简介
MVVM模式解析和在WPF中的实现(一) MVVM模式简介 系列目录: MVVM模式解析和在WPF中的实现(一)MVVM模式简介 MVVM模式解析和在WPF中的实现(二)数据绑定 MVVM模式解析和在 ...
- Cassandra简介
在前面的一篇文章<图形数据库Neo4J简介>中,我们介绍了一种非常流行的图形数据库Neo4J的使用方法.而在本文中,我们将对另外一种类型的NoSQL数据库——Cassandra进行简单地介 ...
- REST简介
一说到REST,我想大家的第一反应就是“啊,就是那种前后台通信方式.”但是在要求详细讲述它所提出的各个约束,以及如何开始搭建REST服务时,却很少有人能够清晰地说出它到底是什么,需要遵守什么样的准则. ...
- Microservice架构模式简介
在2014年,Sam Newman,Martin Fowler在ThoughtWorks的一位同事,出版了一本新书<Building Microservices>.该书描述了如何按照Mic ...
- const,static,extern 简介
const,static,extern 简介 一.const与宏的区别: const简介:之前常用的字符串常量,一般是抽成宏,但是苹果不推荐我们抽成宏,推荐我们使用const常量. 执行时刻:宏是预编 ...
- HTTPS简介
一.简单总结 1.HTTPS概念总结 HTTPS 就是对HTTP进行了TLS或SSL加密. 应用层的HTTP协议通过传输层的TCP协议来传输,HTTPS 在 HTTP和 TCP中间加了一层TLS/SS ...
随机推荐
- Web应用程序项目XXXX已配置为使用IIS。无法访问IIS 元数据库。您没有足够的特权访问计算机上的IIS
错误图片:
- Monitoring and Managing Tomcat
http://tomcat.apache.org/tomcat-7.0-doc/monitoring.html
- h5的图片预览
h5的图片预览是个好东西,不需要保存到后台就能预览图片 代码也很短 <!DOCTYPE html> <html> <head> <meta charset=& ...
- 【UOJ】#49.铀仓库
题解: 会发现实质上运一个点就是两个点之间的距离 暴力是n^2的 考虑二分距离来计算 二分完之后还要二分这个点对应的位置 nlognlogn的 考虑一种常用的思路 用一个点来更新另一个点 首先我们先二 ...
- 【LOJ】#150. 挑战多项式
原题链接 多项式全家桶!快乐!(好像少个除法,不过有除法好像不太快乐) (说真的这是我第一次写exp和开根...水平不行.. 从最基础要实现的操作开始吧.. 多项式取模\(x^n\) 这个..很简单了 ...
- P2393 yyy loves Maths II
P2393 yyy loves Maths IIlong double比如保留5位小数*1000000都变成整数最后再/1000000避免精度误差scanf("%Lf",& ...
- 003.HAProxy ACL规则的智能负载均衡
一 简介 HAProxy可以工作在第七层模型,可通过ACL规则实现基于HAProxy的智能负载均衡系统,HAProxy通过ACL规则完成以下两种主要功能: 通过ACL规则检查客户端请求是否合法,如果符 ...
- Java定时线程池停止超时任务
一.背景题主最近遇到一个问题,本来通过ScheduledExecutorService线程池定时调度一个任务.奈何不知道为啥跑了2个多月,其中一个任务Hang住了,原本定时的任务则出现了问题. 关于定 ...
- canvas学习-----1px线条模糊问题
canvas有时候会出现1像素的线条模糊不清且好像更宽的情况,如下图: 这样的线条显然不是我们想要的. 这篇文章的目的就是弄清楚里面的原理,以及解决它. 大家都知道屏幕上最小的显示尺寸就是1像素,虽然 ...
- hihocoder 1496 寻找最大值(高维前缀最大次大值)
[题目链接] https://hihocoder.com/problemset/problem/1496 [题目大意] 给定N个数A1, A2, A3, ... AN, 从中找到两个数Ai和Aj(i≠ ...