Tiling Up Blocks_DP
Description

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle.
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'.
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B.
Input
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100.
An integer n = 0 (zero) signifies the end of input.
Output
outputs.
Sample Input
3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0
Sample Output
2
3
*
【题意】给出n块积木的左右凹凸的数量,问最高能搭多高;
【思路】dp[i][j]=max(dp[i][j-1],dp[i-1][j])+cnt[i][j];
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=;
int dp[N][N];
int cnt[N][N]; int main()
{
int n;
while(~scanf("%d",&n),n)
{
memset(dp,,sizeof(dp));
memset(cnt,,sizeof(cnt));
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
cnt[x][y]++;
}
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
dp[i][j]=max(dp[i-][j],dp[i][j-])+cnt[i][j];
}
}
printf("%d\n",dp[][]);
}
printf("*\n");
return ;
}
Tiling Up Blocks_DP的更多相关文章
- Texture tiling and swizzling
Texture tiling and swizzling 原帖地址:http://fgiesen.wordpress.com If you’re working with images in your ...
- 图文详解Unity3D中Material的Tiling和Offset是怎么回事
图文详解Unity3D中Material的Tiling和Offset是怎么回事 Tiling和Offset概述 Tiling表示UV坐标的缩放倍数,Offset表示UV坐标的起始位置. 这样说当然是隔 ...
- POJ3420Quad Tiling(矩阵快速幂)
Quad Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3740 Accepted: 1684 Descripti ...
- Tri Tiling[HDU1143]
Tri Tiling Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- Tiling 分类: POJ 2015-06-17 15:15 8人阅读 评论(0) 收藏
Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8091 Accepted: 3918 Descriptio ...
- I - Tri Tiling
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status #in ...
- POJ2506——Tiling
Tiling Description In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? Here is a samp ...
- [POJ 3420] Quad Tiling
Quad Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3495 Accepted: 1539 Des ...
- uva 11270 - Tiling Dominoes(插头dp)
题目链接:uva 11270 - Tiling Dominoes 题目大意:用1∗2木块将给出的n∗m大小的矩阵填满的方法总数. 解题思路:插头dp的裸题,dp[i][s]表示第i块位置.而且该位置相 ...
随机推荐
- Same Tree [LeetCode]
Problem Description: http://oj.leetcode.com/problems/same-tree/ class Solution { public: bool isSame ...
- Eclipse上安装GIT插件EGit
一.Eclipse上安装GIT插件EGit Eclipse的版本eclipse-java-helios-SR2-win32.zip(在Eclipse3.3版本找不到对应的 EGit插件,无法安装) E ...
- 在进程View时的四个构造函数详解
public View(Context context):源代码中的解释如下:在Code中实例化一个View就会调用第一个构造函数 /** * Simple constructor to use wh ...
- MySql查找几个字段的值一样的记录
),name,class,charge_start,charge_end ) ; 注意:having在这里起到很大的作用,只有在having中,才可以对类似sum(),count()等等复合函数的结果 ...
- 600万用户数据导入MYSQL、MSSQL、Oracle数据库方法【转】
1.导入MySql数据库 参考文献:http://zhuaxia.org/blog/post/145 1.1.LOAD DATA INFILE语法 因为获得的数据库文件是一个文本文件www.csd ...
- FZU 2028 时空门问题
题目链接:时空门问题 简单bfs,每个格子移动的方式除了上下左右,还有时空门,开始想着用邻接表保存每个点能通过时空门到达的点就ok了.很快的敲出来,很快的WA了.长久的dbug并没有发现error.然 ...
- C#重启系统代码
C#重启窗体代码 System.Diagnostics.Process.Start(System.Reflection.Assembly.GetExecutingAssembly().Location ...
- libpcap文件格式分析
第一部分:PCAP包文件格式 一 基本格式: 文件头 数据包头数据报数据包头数据报...... 二.文件头: 文件头结构体 sturct pcap_file_header { DWOR ...
- DatagridView的CellLeave光标离开响应事件,实现某列数字自动求和
//光标离开DatagridView,循环获取DatagridView的每一行的第3列的值,相加传给重量 private void dgpz_dataGridView_CellLeave(object ...
- ssh curl 命令理解
使用一条命令抓取一本小说 curl "http://www.23hh.com/book/1/1019/"|iconv -c -f gbk -t utf8 |sed 's/" ...