Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26612   Accepted: 13734

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 

 In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

思路

最近公共祖先模板题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 10005;
struct Edge{
	int to,next;
}edge[maxn];
vector<int>qry[maxn];
int N,tot,fa[maxn],head[maxn],indegree[maxn],ancestor[maxn];
bool vis[maxn];

void init()
{
	tot = 0;
	for (int i = 1;i <= N;i++)	fa[i] = i,head[i] = -1,indegree[i] = 0,vis[i] = false,qry[i].clear();
}

void addedge(int u,int to)
{
	edge[tot] = (Edge){to,head[u]};
	head[u] = tot++;
}

int find(int x)
{
	int r = x;
	while (r != fa[r])	r = fa[r];
	int i = x,j;
	while (i != r)
	{
		j = fa[i];
		fa[i] = r;
		i = j;
	}
	return r;
}

void Union(int x,int y)
{
	x = find(x),y = find(y);
	if (x == y)	return;
	fa[y] = x;	//不能写成fa[x] = y,与集合合并的祖先有关系
}

void targin_LCA(int u)
{
	ancestor[u] = u;
	for (int i = head[u];i != -1;i = edge[i].next)
	{
		int v = edge[i].to;
		targin_LCA(v);
		Union(u,v);
		ancestor[find(u)] = u;
	}
	vis[u] = true;
	int size = qry[u].size();
	for (int i = 0;i < size;i++)
	{
		if (vis[qry[u][i]])	printf("%d\n",ancestor[find(qry[u][i])]);
		return;
	}
} 

int main()
{
	int T;
	scanf("%d",&T);
	while (T--)
	{
		int u,v;
		scanf("%d",&N);
		init();
		for (int i = 1;i < N;i++)
		{
			scanf("%d%d",&u,&v);
			addedge(u,v);
			indegree[v]++;
		}
		scanf("%d%d",&u,&v);
		qry[u].push_back(v),qry[v].push_back(u);
		for (int i = 1;i <= N;i++)
		{
			if (!indegree[i])
			{
				targin_LCA(i);
				break;
			}
		}
	}
	return 0;
}

  

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<vector>
using namespace std;

const int MAXN=10010;

int F[MAXN];//并查集
int r[MAXN];//并查集中集合的个数
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Node
{
    int to,next;
}edge[MAXN*2];

int head[MAXN];
int tol;
void addedge(int a,int b)
{
    edge[tol].to=b;
    edge[tol].next=head[a];
    head[a]=tol++;
    edge[tol].to=a;
    edge[tol].next=head[b];
    head[b]=tol++;
}

struct Query
{
    int q,next;
    int index;//查询编号
}query[MAXN*2];//查询数
int answer[MAXN*2];//查询结果
int cnt;
int h[MAXN];
int tt;
int Q;//查询个数

void add_query(int a,int b,int i)
{
    query[tt].q=b;
    query[tt].next=h[a];
    query[tt].index=i;
    h[a]=tt++;
    query[tt].q=a;
    query[tt].next=h[b];
    query[tt].index=i;
    h[b]=tt++;
}

void init(int n)
{
    for(int i=1;i<=n;i++)
    {
        F[i]=-1;
        r[i]=1;
        vis[i]=false;
        ancestor[i]=0;
        tol=0;
        tt=0;
        cnt=0;//已经查询到的个数
    }
    memset(head,-1,sizeof(head));
    memset(h,-1,sizeof(h));
}
int find(int x)
{
    if(F[x]==-1)return x;
    return F[x]=find(F[x]);
}

void Union(int x,int y)//合并
{
    int t1=find(x);
    int t2=find(y);
    if(t1!=t2)
    {
        if(r[t1]<=r[t2])
        {
            F[t1]=t2;
            r[t2]+=r[t1];
        }
        else
        {
            F[t2]=t1;
            r[t1]+=r[t2];
        }
    }
}

void LCA(int u)
{
    //if(cnt>=Q)return;//不要加这个
    ancestor[u]=u;
    vis[u]=true;//这个一定要放在前面
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].to;
        if(vis[v])continue;
        LCA(v);
        Union(u,v);
        ancestor[find(u)]=u;
    }
    for(int i=h[u];i!=-1;i=query[i].next)
    {
        int v=query[i].q;
        if(vis[v])
        {
            answer[query[i].index]=ancestor[find(v)];
            cnt++;//已经找到的答案数
        }
    }
}
bool flag[MAXN];
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
    int N;
    int u,v;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&N);
        init(N);
        memset(flag,false,sizeof(flag));
        for(int i=1;i<N;i++)
        {
            scanf("%d%d",&u,&v);
            flag[v]=true;
            addedge(u,v);
        }
        Q=1;//查询只有一组
        scanf("%d%d",&u,&v);
        add_query(u,v,0);//增加一组查询
        int root;
        for(int i=1;i<=N;i++)
          if(!flag[i])
          {
              root=i;
              break;
          }
        LCA(root);
        for(int i=0;i<Q;i++)//输出所有答案
          printf("%d\n",answer[i]);
    }
    return 0;
}

  

POJ 1330 Nearest Common Ancestors(Targin求LCA)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  2. poj 1330 Nearest Common Ancestors 单次LCA/DFS

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19919   Accept ...

  3. POJ 1330 Nearest Common Ancestors(裸LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39596   Accept ...

  4. POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)

    Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...

  5. poj 1330 Nearest Common Ancestors 裸的LCA

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  8. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  9. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  10. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

随机推荐

  1. ajax请求加载Loading或错误提示

    <div id="loadingDiv" style="color:#f39800;">Loading...</div> <scr ...

  2. lambda函数、lambda表达式

    C++11 新特性:Lambda 表达式 豆子 2012年5月15日 C++ 10条评论 参考文章:https://blogs.oracle.com/pcarlini/entry/c_1x_tidbi ...

  3. 数据库MongoDB查询语句--持续更新

    模糊查询: 包含字符串str : find({'name':/str/i}); {'name':/str/} 以str开头:   {'name':/^str/} $in查询: 字段:{ field: ...

  4. Android ListView 详解

    我做Android已经有一段时间了,想想之前在学习Android基础知识的时候看到了许许多多博主的博文 和许多的论坛.网站.那时候就非常感谢那些博主们能吧自己的知识分享在互联网上,那时候我就想 如果我 ...

  5. PHP之function_handling 函数

    function_handling 函数 function_handling 函数 需求: 编写一个函数,传入的参数个数不确定,请求出其和. 使用到 以下几个函数: 代码说明: 函数的参数可以是另外一 ...

  6. Java网络编程——概述

    一.网络模型 OSI七层模型 应用层 表示层 会话层 传输层: 网络层: 链路层 物理层:比特流 TCP/IP四层模型 应用层 传输层:数据包,TCP/UDP 网络层:数据帧 物理层:比特流 二.网络 ...

  7. Oracle Temp表空间切换

    来源于:  http://www.2cto.com/database/201507/418564.html 一.TEMP表空间作用 临时表空间主要用途是在数据库进行排序运算.管理索引.访问视图等操作时 ...

  8. Spring_SpEL

    一.本文目录         简单介绍SpEL的概念和使用     二.概念 Spring 表达式语言(简称SpEL):是一个支持运行时查询和操作对象图的强大的表达式语言.语法类似于 EL:SpEL ...

  9. 【CodeVS 1582】【SDOI 2009】E和D

    http://codevs.cn/problem/1582/ 首先我打了一张50*50的表(4用#代替) 并没有发现什么规律! 然后观察题解可得,我观察的是TimeMachine学长的题解 什么得到s ...

  10. 线段树 poj3225

    U:把区间[l,r]覆盖成1I:把[-∞,l)(r,∞]覆盖成0    D:把区间[l,r]覆盖成0C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换S:[l,r]区间0/1互换 因 ...