将这张图化简,不断删掉度为1的点(类似于拓扑排序),构成了一张由环组成的图
考虑一个连通块中,设点数为n,边数为m(已经删掉了度为1的点),那么一共只有三种情况:
1.一个环($n=m$),一定为YES
2.多个环嵌套($n+1<m$),一定为NO
3.两个环($n+1=m$),其实可以看成有两个点(可以重合),然后这两个点中间有三条路径,记长度分别为l1,l2,l3,那么有结论:当且仅当三条边依次为2,2和偶数时成立
证明:
首先三条边必然要同奇偶,否则存在奇环,对于奇环上的点都选择集合${AB}$即可卡掉
然后如果三条边都是奇数,由于原图不存在重边,因此最多只有一条路径上没有点,不妨设$l1,l2>1$,可以用l3来构造两点不同,l1来构造不能选AB,l2来构造不能选BA
那么三条边都是偶数,如果其中只有1条边小于等于2,那么$l1,l2\ge 4$,同理可以用l3来构造两点相同,l1来卡掉都选A,l2来卡掉都选B
当有两条路径长度小于等于2(由于没有重边,所以一定都恰好为2),很容易发现无法卡掉

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10005
4 queue<int>q;
5 vector<int>v[N];
6 int t,n,m,x,y,a[N],r[N],vis[N];
7 void dfs(int k,int fa){
8 if (vis[k])return;
9 vis[k]=1;
10 if (r[k]>2)a[++a[0]]=k;
11 x++;
12 for(int i=0;i<v[k].size();i++)
13 if ((r[v[k][i]]>1)&&(v[k][i]!=fa)){
14 if ((fa)||(!vis[v[k][i]]))y++;
15 dfs(v[k][i],k);
16 }
17 }
18 void calc(int k,int fa,int x,int s){
19 if (k==x){
20 a[++a[0]]=s;
21 return;
22 }
23 for(int i=0;i<v[k].size();i++)
24 if ((r[v[k][i]]>1)&&(v[k][i]!=fa))calc(v[k][i],k,x,s+1);
25 }
26 int main(){
27 scanf("%d",&t);
28 while (t--){
29 scanf("%d%d",&n,&m);
30 memset(r,0,sizeof(r));
31 memset(vis,0,sizeof(vis));
32 for(int i=1;i<=n;i++)v[i].clear();
33 for(int i=1;i<=m;i++){
34 scanf("%d%d",&x,&y);
35 r[x]++;
36 r[y]++;
37 v[x].push_back(y);
38 v[y].push_back(x);
39 }
40 for(int i=1;i<=n;i++){
41 if (!r[i])vis[i]=1;
42 if (r[i]==1)q.push(i);
43 }
44 while (!q.empty()){
45 int k=q.front();
46 q.pop();
47 vis[k]=1;
48 for(int i=0;i<v[k].size();i++)
49 if (--r[v[k][i]]==1)q.push(v[k][i]);
50 }
51 bool flag=0;
52 for(int i=1;i<=n;i++){
53 x=y=a[0]=0;
54 dfs(i,0);
55 if ((x==y)&&(x%2==0))continue;
56 if ((a[0]<2)||(x+1<y)||(x==y)&&(x&1)){
57 flag=1;
58 break;
59 }
60 x=a[1];
61 y=a[2];
62 a[0]=0;
63 calc(x,0,y,0);
64 sort(a+1,a+a[0]+1);
65 if ((a[1]&1)||(a[2]&1)||(a[3]&1)||(a[2]>2)){
66 flag=1;
67 break;
68 }
69 }
70 if (flag)printf("NO\n");
71 else printf("YES\n");
72 }
73 }

[bzoj5295]染色的更多相关文章

  1. bzoj2243树链剖分+染色段数

    终于做了一道不是一眼出思路的代码题(⊙o⊙) 之前没有接触过这种关于染色段数的题目(其实上课好像讲过),于是百度了一下(现在思维能力好弱) 实际上每一段有用的信息就是总共有几段和两段各是什么颜色,在开 ...

  2. 51nod 算法马拉松18 A 染色问题

    染色问题 基准时间限制:1 秒 空间限制:10240 KB 分值: 40 一个n(3<=n<=100)个点的完全图,现在给出n,要求将每条边都染上一种颜色k(1<=k<=n), ...

  3. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  4. NOIP2008双栈排序[二分图染色|栈|DP]

    题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...

  5. 洛谷P1330封锁阳光大学[二分图染色]

    题目描述 曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街.河蟹看到欢快的曹,感到不爽.河蟹决定封锁阳光大学,不让曹刷街. 阳光大学的校园是一张由N个点构成的无向图,N个点之间由M ...

  6. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  7. NOIP2010关押罪犯[并查集|二分答案+二分图染色 | 种类并查集]

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整数值)来表示 ...

  8. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

  9. UVALive 4849 String Phone(2-sat、01染色)

    题目一眼看去以为是4-sat... 题意:给n(n<=3000)个黑方块的坐标,保证黑方块没有公共边.对于每个黑方块选一个角作为结点,使得所选结点满足输入的一个无向图.其中距离为曼哈顿距离.输出 ...

随机推荐

  1. 云无关、桌面端、基于Kubernetes的平台Otomi

    一.Otomi介绍 Otomi官网:https://otomi.io/ Otomi-core核心模块Github地址:https://github.com/redkubes/otomi-core Ot ...

  2. 利用PATH环境变量 - 提升linux权限~👻

    利用PATH提升linux权限 参考地址:https://www.hackingarticles.in/linux-privilege-escalation-using-path-variable/ ...

  3. 1002 写出这个数 (20 分) java解题

    读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值.这里保证 n 小于 10^100. 输出格式: 在一行内输 ...

  4. Spring框架访问数据库的两种方式的小案例

    1.1 以Xml的方式访问数据库的案例 要以xml的方式访问数据库需要用到JdbcTemplate ,因为 JdbcTemplate(jdbc的模板对象)在Spring 中提供了一个可以操作数据库的对 ...

  5. C++控制台应用程序一闪而过的解决方法

    Visual Studio 2017 C++控制台应用程序, 如果编译时发现黑框一闪而过,请按以下步骤操作: 右键project → 属性 → 链接器 → 系统 → 子系统,在下拉菜单中改为控制台.

  6. programmercarl——数组——二分查找

    二分查找,在经过: 34--https://leetcode-cn.com/problems/find-first-and-last-position-of-element-in-sorted-arr ...

  7. SpringCloud-SpringBoot-SpringCloudAlibaba对应版本选择

    一.SpringCloud-SpringBoot 对应的版本选择 SpringCloud官网常规方式只能查看最新的几个版本信息 https://spring.io/projects/spring-cl ...

  8. 【UE4 C++ 基础知识】<12> 多线程——FRunnable

    概述 UE4里,提供的多线程的方法: 继承 FRunnable 接口创建单个线程 创建 AsyncTask 调用线程池里面空闲的线程 通过 TaskGraph 系统来异步完成一些自定义任务 支持原生的 ...

  9. BUAA2020软工作业(四)——结对项目

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目作业 我在这个课程的目标是 进一步提高自己的编码能力,工程能力,团队协作能力 这个作业在哪 ...

  10. Noip模拟50 2021.9.10

    已经好长时间没有考试不挂分的良好体验了... T1 第零题 开场数据结构,真爽 对于这道题首先要理解对于一条链从上向下和从下向上走复活次数相等 (这可能需要晚上躺在被窝里面脑摸几种情况的样例) 然后就 ...