CF1278F Cards
CF1278F Cards
首先我们知道,一次拿牌的概率是 $ P(i) = \frac 1 m $ ,同时权值是1,所以期望就是 $ \frac{1} m $,拿 $ n $ 次牌贡献是独立的,就是 $ \frac n m $。
但是我们要算的是 $ k $ 次方的期望,众所周知期望的二次方不等于二次方的期望。我们考虑 $ E $ 的意义,$ E $ 在这一次拿到 Joker 的 $ \frac 1 m $ 的概率下是 1 ,其他情况是0。则 $ E^2 $ 就是随机两次,这两次都是 1 的情况下是 1 ,其他情况是0。
我们把这 $ n $ 次是否抓到 Joker 的 0/1 写成一个序列,所以知道最后统计的答案,就是所有的长度为 $ k $ 的有序子序列(可以是 $ A_3,A_2,A_2 $ 这种的 ),它做出贡献的前提就是这个子序列的所有随机变量都去到 1 了。
接着考虑,如果两个序列的位置种类数一致,那么它们出现的概率是相同的。如果知道这些位置都是 Joker ,那么这些位置组成的所有序列都会出现。
所以考虑一个 dp ,$ dp[i][j] $ 表示当前在选择第 $ i $ 个位置,到达这个位置时已经有 $ j $ 个不同的位置出现了。那么 $ \sum dp[k][i] \times \frac{1}{m^{i}} $ 就是答案,因为有 $ \frac{1}{m^i} $ 的概率这 $ i $ 个钦定的元素位置都是 Joker,这样带来的权值就是方案数。然后考虑这个 dp 的递推,这是很轻松的:
\]
就是考虑第 $ i $ 个位置是选择前 $ j $ 个之一还是新选择一种。
代码很简单:
#include "algorithm"
#include "iostream"
#include "cstring"
#include "cstdio"
using namespace std;
#define MAXN 5006
#define P 998244353
int n , m , k;
int dp[MAXN][MAXN];
int Pow( int a , int b ) {
int cur = a % P , ans = 1;
while( b ) {
if( b & 1 ) ans = 1ll * ans * cur % P;
cur = 1ll * cur * cur % P , b >>= 1;
}
return ans;
}
int main( ) {
cin >> n >> m >> k;
dp[0][0] = 1;
for( int i = 1 ; i <= k ; ++ i ) {
for (int j = 1; j <= i; ++j)
dp[i][j] = ( 1ll * dp[i-1][j] * j % P + 1ll * dp[i-1][j-1] * ( n - j + 1 ) % P ) % P;
}
int res = 0 , cur = 1 , p = Pow( m , P - 2 );
for( int i = 0 ; i <= k ; ++ i )
( res += 1ll * dp[k][i] * cur % P ) %= P , cur = 1ll * cur * p % P;
cout << res << endl;
}
CF1278F Cards的更多相关文章
- 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- BZOJ 1004 【HNOI2008】 Cards
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...
- Codeforces Round #384 (Div. 2) 734E Vladik and cards
E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- bzoj 1004 Cards
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...
- codeforces 744C Hongcow Buys a Deck of Cards
C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...
- CF 204B Little Elephant and Cards
题目链接: 传送门 Little Elephant and Cards time limit per test:2 second memory limit per test:256 megab ...
- HDU 1535 Invitation Cards(最短路 spfa)
题目链接: 传送门 Invitation Cards Time Limit: 5000MS Memory Limit: 32768 K Description In the age of te ...
- Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组
E. George and Cards George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...
随机推荐
- linux系统(centos)下su和sudo命令的区别
linux系统(centos)下su和sudo命令的区别 区别 我们在日常使用过程中,这2个命令很多时候能达到相同的效果,对细节区别十分模糊,这里进行简单的解释和区分.希望大家能够正确使用这2个命令, ...
- sqlmap--tamper使用技巧
apostrophemask.py 适用数据库:ALL 作用:将引号替换为utf-8,用于过滤单引号 使用脚本前: tamper("1 AND '1'='1") 使用脚本后: 1A ...
- 240.搜索二维矩阵II
从左下角位置开始搜索 时间复杂度:O(行数+列数). 想法有点像二分法,大了往一个方向找,小了往另一个方向找.由于矩阵横向和纵向都是递增,如果从(0,0)位置开始找,往右和往下都是增大,因此不知道实际 ...
- 【二食堂】Alpha - Scrum Meeting 2
Scrum Meeting 2 例会时间:4.11 20:00 - 20:30 进度情况 组员 今日进度 明日任务4.12不开会 李健 1. 学习并成功搭建简单的网页issue2. 学习JS基础知识i ...
- Beta阶段第三次会议
Beta阶段第三次会议 完成工作 姓名 工作 难度 完成度 ltx 1.掌握小程序代码和相关知识2.构思小程序游客模式 轻 90% xyq 1.修改场地表格信息2.对原页面活动申请场地部分进行修改 轻 ...
- 配置 JAVA 环境 JDK + IDEA
配置JDK 搜索 ORACLE 官网,找到 JDK,下载 JDK8 版本 / JDK11 版本 选择合适的路径,我这里放在了 D 盘 配置下方系统环境变量,变量名为 JAVA_HOME,把刚刚安装的J ...
- Prometheus基于Eureka的服务发现
Prometheus基于Eureka的服务发现 一.背景 二.实现步骤 1.eureka 客户端注册到prometheus中 2.prometheus中的写法 3.实现效果 三.完整代码 四.参考链接 ...
- vcs命令
转载:VCS_weixin_34256074的博客-CSDN博客 timing check相关的: +notimingcheck命令,可以用在compile时,也可以用在run time的时候, 都是 ...
- 第09课 OpenGL 移动图像
3D空间中移动图像: 你想知道如何在3D空间中移动物体,你想知道如何在屏幕上绘制一个图像,而让图像的背景色变为透明,你希望有一个简单的动画.这一课将教会你所有的一切.前面的课程涵盖了基础的OpenGL ...
- 为什么IDEA不推荐你使用@Autowired ?
@Autowired注解相信每个Spring开发者都不陌生了!在DD的Spring Boot基础教程和Spring Cloud基础教程中也都经常会出现. 但是当我们使用IDEA写代码的时候,经常会发现 ...