1298 - One Theorem, One Year
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
A number is Almost-K-Prime if it has exactly K prime numbers (not necessarily distinct) in its prime factorization. For example, 12 = 2 * 2 * 3 is an Almost-3-Prime and 32 = 2 * 2 * 2 * 2 * 2 is an Almost-5-Prime number. A number X is called Almost-K-First-P-Prime if it satisfies the following criterions:
- X is an Almost-K-Prime and
- X has all and only the first P (P ≤ K) primes in its prime factorization.
For example, if K=3 and P=2, the numbers 18 = 2 * 3 * 3 and 12 = 2 * 2 * 3 satisfy the above criterions. And 630 = 2 * 3 * 3 * 5 * 7 is an example of Almost-5-First-4-Pime.
For a given K and P, your task is to calculate the summation of Φ(X) for all integers X such that X is an Almost-K-First-P-Prime.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing two integers K (1 ≤ K ≤ 500) and P (1 ≤ P ≤ K).
Output
For each case, print the case number and the result modulo 1000000007.
Sample Input |
Output for Sample Input |
|
3 3 2 5 4 99 45 |
Case 1: 10 Case 2: 816 Case 3: 49939643 |
Note
- In mathematics Φ(X) means the number of relatively prime numbers with respect to X which are smaller than X. Two numbers are relatively prime if their GCD (Greatest Common Divisor) is 1. For example, Φ(12) = 4, because the numbers that are relatively prime to 12 are: 1, 5, 7, 11.
- For the first case, K = 3 and P = 2 we have only two such numbers which are Almost-3-First-2-Prime, 18=2*3*3 and 12=2*2*3. The result is therefore, Φ(12) + Φ(18) = 10.
1 #include<math.h>
2 #include<stdlib.h>
3 #include<stdio.h>
4 #include <algorithm>
5 #include<iostream>
6 #include<string.h>
7 #include<vector>
8 #include<map>
9 #include<math.h>
10 using namespace std;
11 typedef long long LL;
12 typedef unsigned long long ll;
13 bool prime[5000]= {0};
14 int su[600];
15 LL dp[600][600];
16 LL ola[600];
17 LL ola1[600];
18 const LL mod=1e9+7;
19 LL quick(int n,int m);
20 int main(void)
21 {
22 int i,j,k,p,q;
23 for(i=2; i<=100; i++)
24 {
25 for(j=i; i*j<=5000; j++)
26 {
27 prime[i*j]=true;
28 }
29 }
30 int ans=1;
31 for(i=2; i<=5000; i++)
32 {
33 if(!prime[i])
34 {
35 su[ans++]=i;
36 }
37 }
38 memset(dp,0,sizeof(dp));
39 dp[0][0]=1;
40 dp[1][1]=2;
41 for(i=1; i<=500; i++)
42 {
43 for(j=i; j<=500; j++)
44 {
45 dp[i][j]=(((dp[i][j-1]+dp[i-1][j-1])%mod)*(su[i]))%mod;
46 }
47 }
48 ola[1]=su[1];
49 ola1[1]=su[1]-1;
50 for(i=2; i<=500; i++)
51 {
52 ola[i]=(su[i]*ola[i-1])%mod;
53 ola1[i]=(su[i]-1)*ola1[i-1]%mod;
54 }
55 for(i=1; i<=500; i++)
56 {
57 ola[i]=quick(ola[i],mod-2);
58 }
59 scanf("%d",&k);
60 int s;
61 for(s=1; s<=k; s++)
62 {
63 scanf("%d %d",&p,&q);
64 LL cnt=dp[q][p];
65 LL cns=ola[q];
66 LL bns=ola1[q];
67 LL sum=((cnt*cns)%mod*bns)%mod;
68 printf("Case %d: ",s);
69 printf("%lld\n",sum);
70 }
71 return 0;
72 }
73 LL quick(int n,int m)
74 {
75 LL ans=1;
76 LL N=n;
77 while(m)
78 {
79 if(m&1)
80 {
81 ans=(ans*N)%mod;
82 }
83 N=(N*N)%mod;
84 m/=2;
85 }
86 return ans;
87 }
1298 - One Theorem, One Year的更多相关文章
- LightOj 1298 - One Theorem, One Year(DP + 欧拉)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1298 题意:给你两个数 n, p,表示一个数是由前 k 个素数组成的,共有 n 个素数 ...
- Parseval's theorem 帕塞瓦尔定理
Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...
- 生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)
树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Krus ...
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
随机推荐
- Java的那些小事
一,JDK和JRE有什么区别? JRE:Java Runtime Environment(java运行时环境).即java程序的运行时环境,包含了java虚拟机,java基础类库. JDK:Java ...
- python 多态、组合、反射
目录 多态.多态性 多态 多态性 鸭子类型 父类限制子类的行为 组合 面向对象的内置函数 反射 多态.多态性 多态 多态通俗理解起来,就像迪迦奥特曼有三种形态一样,怎么变还是迪迦奥特曼 定义:多态指的 ...
- 学习java 7.2
学习内容:案例一:斐波那契数列从1开始作为第一个数,求第20个数 public class Test { public static void main(String[ ] args){ int[ ] ...
- 学习java 7.18
学习内容: Lambda表达式的格式:(形式参数) -> {代码块} 如果有多个参数,参数之间用逗号隔开 new Thread( () -> { System.out.pri ...
- Spark中的分区方法详解
转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilien ...
- 零基础学习java------day9------多态,抽象类,接口
1. 多态 1.1 概述: 某一个事务,在不同环境下表现出来的不同状态 如:中国人可以是人的类型,中国人 p = new 中国人():同时中国人也是人类的一份,也可以把中国人称为人类,人类 d ...
- 【leetcode】15. 3 Sum 双指针 压缩搜索空间
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i ...
- Linux基础命令---mput上传ftp文件
mput 使用lftp登录ftp服务器之后,可以使用put指令将文件上传到服务器.mput指令可以使用通配符,而put指令则不可以. 1.语法 mput [-c] [-d] [-a] ...
- java职业路线图
- 一、手把手教你docker搭建fastDFS文件上传下载服务器
在搭建fastDFS文件上传下载服务器之前,你需要准备的有一个可连接的linux服务器,并且该linux服务器上已经安装了docker,若还有没安装docker的,先百度自行安装docker. 1.执 ...