【深度学习】批归一化(Batch Normalization)
BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中“梯度弥散”的问题,从而使得训练深层网络模型更加容易和稳定。所以目前BN已经成为几乎所有卷积神经网络的标配技巧了。
从字面意思看来Batch Normalization(简称BN)就是对每一批数据进行归一化,确实如此,对于训练中某一个batch的数据{x1,x2,...,xn},注意这个数据是可以输入也可以是网络中间的某一层输出。在BN出现之前,我们的归一化操作一般都在数据输入层,对输入的数据进行求均值以及求方差做归一化,但是BN的出现打破了这一个规定,我们可以在网络中任意一层进行归一化处理,因为我们现在所用的优化方法大多都是min-batch SGD,所以我们的归一化操作就成为Batch Normalization。
我们为什么需要BN?
我们知道网络一旦train起来,那么参数就要发生更新,除了输入层的数据外(因为输入层数据,我们已经人为的为每个样本归一化),后面网络每一层的输入数据分布是一直在发生变化的,因为在训练的时候,前面层训练参数的更新将导致后面层输入数据分布的变化。以网络第二层为例:网络的第二层输入,是由第一层的参数和input计算得到的,而第一层的参数在整个训练过程中一直在变化,因此必然会引起后面每一层输入数据分布的改变。我们把网络中间层在训练过程中,数据分布的改变称之为:“Internal Covariate Shift”。BN的提出,就是要解决在训练过程中,中间层数据分布发生改变的情况。
BN怎么做?

如上图所示,BN步骤主要分为4步:
- 求每一个训练批次数据的均值
- 求每一个训练批次数据的方差
- 使用求得的均值和方差对该批次的训练数据做归一化,获得0-1分布。其中
$\varepsilon$是为了避免除数为0时所使用的微小正数。 - 尺度变换和偏移:将
$x_{i}$乘以$\gamma$调整数值大小,再加上$\beta$增加偏移后得到$y_{i}$,这里的$\gamma$是尺度因子,$\beta$是平移因子。这一步是BN的精髓,由于归一化后的$x_{i}$基本会被限制在正态分布下,使得网络的表达能力下降。为解决该问题,我们引入两个新的参数:$\gamma$,$\beta$。$\gamma$和$\beta$是在训练时网络自己学习得到的。
BN到底解决了什么?
一个标准的归一化步骤就是减均值除方差,那这种归一化操作有什么作用呢?我们观察下图,


a中左图是没有经过任何处理的输入数据,曲线是sigmoid函数,如果数据在梯度很小的区域,那么学习率就会很慢甚至陷入长时间的停滞。减均值除方差后,数据就被移到中心区域如右图所示,对于大多数激活函数而言,这个区域的梯度都是最大的或者是有梯度的(比如ReLU),这可以看做是一种对抗梯度消失的有效手段。对于一层如此,如果对于每一层数据都那么做的话,数据的分布总是在随着变化敏感的区域,相当于不用考虑数据分布变化了,这样训练起来更有效率。
那么为什么要有第4步,不是仅使用减均值除方差操作就能获得目的效果吗?我们思考一个问题,减均值除方差得到的分布是正态分布,我们能否认为正态分布就是最好或最能体现我们训练样本的特征分布呢?不能,比如数据本身就很不对称,或者激活函数未必是对方差为1的数据最好的效果,比如Sigmoid激活函数,在-1~1之间的梯度变化不大,那么非线性变换的作用就不能很好的体现,换言之就是,减均值除方差操作后可能会削弱网络的性能!针对该情况,在前面三步之后加入第4步完成真正的batch normalization。
BN的本质就是利用优化变一下方差大小和均值位置,使得新的分布更切合数据的真实分布,保证模型的非线性表达能力。BN的极端的情况就是这两个参数等于mini-batch的均值和方差,那么经过batch normalization之后的数据和输入完全一样,当然一般的情况是不同的。
预测时均值和方差怎么求?
在训练时,我们会对同一批的数据的均值和方差进行求解,进而进行归一化操作。但是对于预测时我们的均值和方差怎么求呢?比如我们预测单个样本时,那还怎么求均值和方法呀!其实是这种样子的,对于预测阶段时所使用的均值和方差,其实也是来源于训练集。比如我们在模型训练时我们就记录下每个batch下的均值和方差,待训练完毕后,我们求整个训练样本的均值和方差期望值,作为我们进行预测时进行BN的的均值和方差:

最后测试阶段,BN的使用公式就是:


关于BN的使用位置,在CNN中一般应作用与非线性激活函数之前,s型函数s(x)的自变量x是经过BN处理后的结果。因此前向传导的计算公式就应该是:

其实因为偏置参数b经过BN层后其实是没有用的,最后也会被均值归一化,当然BN层后面还有个β参数作为偏置项,所以b这个参数就可以不用了。因此最后把BN层+激活函数层就变成了:

CNN中的BN
注意前面写的都是对于一般情况,对于卷积神经网络有些许不同。因为卷积神经网络的特征是对应到一整张特征响应图上的,所以做BN时也应以响应图为单位而不是按照各个维度。比如在某一层,batch大小为m,响应图大小为w×h,则做BN的数据量为m×w×h。
BN在深层神经网络的作用非常明显:若神经网络训练时遇到收敛速度较慢,或者“梯度爆炸”等无法训练的情况发生时都可以尝试用BN来解决。同时,常规使用情况下同样可以加入BN来加速模型训练,甚至提升模型精度。
【深度学习】批归一化(Batch Normalization)的更多相关文章
- 深度学习网络层之 Batch Normalization
Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Trainin ...
- 深度学习面试题21:批量归一化(Batch Normalization,BN)
目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于201 ...
- 深度解析Droupout与Batch Normalization
Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dro ...
- 深度学习中优化【Normalization】
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization? 深度神经网络模型的训练为什么会很困难?其中一个重 ...
- 深度学习中的batch、epoch、iteration的含义
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍, ...
- 批标准化 Batch Normalization
2018-12-05 20:28:15 在机器学习领域有一个很重要的假设,即独立同分布假设,也就是说训练集和测试集是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障.而 ...
- 从头学pytorch(十九):批量归一化batch normalization
批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...
- 深度学习中的batch的大小对学习效果的影响
Batch_size参数的作用:决定了下降的方向 极端一: batch_size为全数据集(Full Batch Learning): 好处: 1.由全数据集确定的方向能够更好地代表样本总体,从而更准 ...
- (转载)深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization)
深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization) 作者:罗平.任家敏.彭章琳 编写:吴凌云.张瑞茂.邵文琪.王新江 转自:知乎.原论文参考arXiv:180 ...
- 深度学习框架PyTorch一书的学习-第四章-神经网络工具箱nn
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autogr ...
随机推荐
- Generator函数异步应用
转载请注明出处: Generator函数异步应用 上一篇文章详细的介绍了Generator函数的语法,这篇文章来说一下如何使用Generator函数来实现异步编程. 或许用Generator函数来实现 ...
- Npm vs Yarn 之备忘大全
有则笑话,如此讲到:"老丈人爱吃核桃,昨天买了二斤陪妻子送去,老丈人年轻时练过武,用手一拍核桃就碎了,笑着对我说:你还用锤子,你看我用手就成.我嘴一抽,来了句:人和动物最大的区别就是人会使用 ...
- linux 下CentOS 下 npm命令安装gitbook失败的问题
运行环境 linux 服务器:CentOS 7.0 系统:安装了nodejs :使用 npm 安装 gitbook 出现错误提示: npm install -g gitbook-cli symbol ...
- .23-浅析webpack源码之事件流compilation(1)
正式开始跑编译,依次解析,首先是: compiler.apply( new JsonpTemplatePlugin(options.output), // start new FunctionModu ...
- 久未更 ~ 五之 —— 引入外部CSS样式表 小节
> > > > > 久未更 系列一:在html中引入外部css样式表 //引入外部css样式表 //<lilnk>要放在<head>标签的第一行, ...
- HTML 5 <canvas> 标签
<!DOCTYPE HTML> <html> <body> <canvas id="myCanvas">your browser d ...
- Web前端学习(1):上网的过程与网页的本质
"众里寻他千百度"--但是在信息化时代,我们只需要动动手指百度一下,google一下,便可以在网络上寻得我们想要查找的信息.我们或许都知道要如何在网上获得自己所需信息,但是上网的过 ...
- Apache 403 错误解决方法-让别人可以访问你的服务器
参考网址:http://www.cnblogs.com/mrlaker/archive/2013/04/29/3050888.html http://www.jb51.net/article/6119 ...
- Thrift之TProtocol系列TBinaryProtocol解析
首先看一下Thrift的整体架构,如下图: 如图所示,黄色部分是用户实现的业务逻辑,褐色部分是根据thrift定义的服务接口描述文件生成的客户端和服务器端代码框架(前篇2中已分析了thrift ser ...
- pthread_cond_wait的spurious wakeup问题
最近在温习pthread的时候,忽然发现以前对pthread_cond_wait的了解太肤浅了.昨晚在看<Programming With POSIX Threads>的时候,看到了pth ...