POJ_2318_TOYS&&POJ_2398_Toy Storage_二分+判断直线和点的位置

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.

Output

The
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

2318:对于每个玩具,二分查找一下,判断这个点在直线的左边还是右边,判断叉积的正负即可。
2398:同理,只需要对点排个序。 代码(2318):
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define N 5050
#define eps 1e-6
int n,m,x_1,x_2,y_1,y_2,x_t,y_t;
int u[N],l[N],L,R,ans[N];
struct Point {
f2 x,y;
Point() {}
Point(f2 x_,f2 y_) :
x(x_),y(y_) {}
Point operator + (const Point &p) {return Point(x+p.x,y+p.y);}
Point operator - (const Point &p) {return Point(x-p.x,y-p.y);}
Point operator * (f2 rate) {return Point(x*rate,y*rate);}
};
f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
bool check(int x) {
Point A=Point(u[x]-l[x],y_1-y_2);
Point B=Point(u[x]-x_t,y_1-y_t);
return cross(B,A)>-eps;
}
void init() {
memset(ans,0,sizeof(ans));
}
int main() {
while(1) {
scanf("%d",&n);
if(!n) return 0;
init();
scanf("%d%d%d%d%d",&m,&x_1,&y_1,&x_2,&y_2);
u[0]=0; l[0]=0;
int i;
for(i=1;i<=n;i++) {
scanf("%d%d",&u[i],&l[i]);
}
for(i=1;i<=m;i++) {
scanf("%d%d",&x_t,&y_t);
L=0; R=n+1;
while(L<R) {
int mid=(L+R)>>1;
if(check(mid)) R=mid;
else L=mid+1;
}
ans[L-1]++;
}
for(i=0;i<=n;i++) {
printf("%d: %d\n",i,ans[i]);
}
puts("");
}
}

代码(2318):

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define N 5050
#define eps 1e-6
int n,m,x_1,x_2,y_1,y_2,x_t,y_t;
int u[N],l[N],L,R,ans[N],cnt[N];
struct Point {
f2 x,y;
Point() {}
Point(f2 x_,f2 y_) :
x(x_),y(y_) {}
Point operator + (const Point &p) {return Point(x+p.x,y+p.y);}
Point operator - (const Point &p) {return Point(x-p.x,y-p.y);}
Point operator * (f2 rate) {return Point(x*rate,y*rate);}
};
f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
bool check(int x) {
Point A=Point(u[x]-l[x],y_1-y_2);
Point B=Point(u[x]-x_t,y_1-y_t);
return cross(B,A)>-eps;
}
void init() {
memset(ans,0,sizeof(ans));
memset(cnt,0,sizeof(cnt));
}
int main() {
while(1) {
scanf("%d",&n);
if(!n) return 0;
init();
scanf("%d%d%d%d%d",&m,&x_1,&y_1,&x_2,&y_2);
u[0]=0; l[0]=0;
int i;
for(i=1;i<=n;i++) {
scanf("%d%d",&u[i],&l[i]);
}
sort(u+1,u+n+1);
sort(l+1,l+n+1);
ans[0]=n+1;
for(i=1;i<=m;i++) {
scanf("%d%d",&x_t,&y_t);
L=0; R=n+1;
while(L<R) {
int mid=(L+R)>>1;
if(check(mid)) R=mid;
else L=mid+1;
}
ans[cnt[L-1]]--;
cnt[L-1]++;
ans[cnt[L-1]]++;
}
puts("Box");
for(i=1;i<=m;i++) {
if(ans[i])
printf("%d: %d\n",i,ans[i]);
}
}
}

POJ_2318_TOYS&&POJ_2398_Toy Storage_二分+判断直线和点的位置关系的更多相关文章

  1. Segments---poj3304(判断直线与线段的位置关系)

    题目链接:http://poj.org/problem?id=3304 题意:给你n个线段,求是否有一条直线与所有的线段都相交,有Yes,没有No; 枚举所有的顶点作为直线的两点,然后判断这条直线是否 ...

  2. 叉积_判断点与三角形的位置关系 P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

  3. Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...

  4. LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...

  5. [poj2318]TOYS(直线与点的位置关系)

    解题关键:计算几何入门题,通过叉积判断. 两个向量的关系: P*Q>0,Q在P的逆时针方向: P*Q<0,Q在P的顺时针方向: P*Q==0,Q与P共线. 实际就是用右手定则判断的. #i ...

  6. luogu 1355 神秘大三角 判断点和三角形的位置关系 面积法 叉积法

    题目链接 题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样 ...

  7. Segments--poj3304(判断直线与线段之间的关系)

    http://poj.org/problem?id=3304 给你几条线段  然后 让你找到一条直线让他在这条直线上的映射有一个重合点 如果有这条直线的话  这个重合的部分的两个端点一定是某两条线段的 ...

  8. [fzu 2273]判断两个三角形的位置关系

    首先判断是否相交,就是枚举3*3对边的相交关系. 如果不相交,判断包含还是相离,就是判断点在三角形内还是三角形外.两边各判断一次. //http://acm.fzu.edu.cn/problem.ph ...

  9. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

随机推荐

  1. Oracle技术面试问题

    这也许是你一直期待的文章,在关注这部分技术问题的同时,请务必阅读有关面试中有关个人的问题和解答.这里的回答并不是十分全面,这些问题可以通过多个 角度来进行解释,也许你不必在面试过程中给出完全详尽的答案 ...

  2. treeview调用数据库成树

    目的:将数据库中的数据与树控件绑定背景:我们想在树控件中显示销售客户的层级列表,这个销售客户的分层是这样的,先按"大区",再按"省份",最后到"客户& ...

  3. 转:<mvc:annotation-driven/>的注解意义

    <mvc:annotation-driven /> 是一种简写形式,完全可以手动配置替代这种简写形式,简写形式可以让初学都快速应用默认配置方案.<mvc:annotation-dri ...

  4. Vue 仿B站滑动导航

    仿照B站制作的滑动导航功能,进行了部分优化,例如可定制默认选中元素,并将选中元素居中显示,可动态更改数据,可定制回调函数取的下标和选中元素内容,可根据需求制作N级联动 已开发成插件,使用方法与源码请前 ...

  5. 移动端h5实现复制功能

    首先遇到这个需求是就各种百度,但是发现基本都是用js实现,而且兼容性还非常不好. 但是在寻觅和尝试的过程中,发现只需要css代码也可以完全实现的,对需要复制内容的标签加上下面这几行代码就可以了. -w ...

  6. SQL Server 表的管理_关于事务的处理的详解(案例代码)

    SQL Server 表的管理_关于事务的处理的详解(案例代码) 一.SQL 事务 1.1SQL 事务 ●事务是在数据库上按照一定的逻辑顺序执行的任务序列,既可以由用户手动执行,也可以由某种数据库程序 ...

  7. Python_回调函数

    import os import stat def remove_readonly(func,path): #定义回调函数 os.chmod(path,stat.S_IWRITE) #删除文件的只读文 ...

  8. 杨老师课堂之JavaScript定时器_农夫山泉限时秒杀案例

    预览效果图: 使用到的知识点: 定时器 setInterval(函数,毫秒):在指定的毫秒数后调用函数或执行一段代码 取消定时器 clearInterval:取消由setInterval设置的定时器 ...

  9. explicit的作用

    用来修饰类的构造函数,被修饰的构造函数的类,不能发生相应的隐式类型转换,只能以显示的方式进行类型转换,例如:不加:Circle A = Circle(1.23) 加上之后:只能写:Circle A(1 ...

  10. iOS开发中数据持久化

    使用几个小例子分别实现 归档NSKeyedArchiver.NSUserDefaults.plist文件数据存储,简单直观.代码地址