[LeetCode] Longest Palindromic Substring 最长回文串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:
Input: "cbbd"
Output: "bb"
这道题让我们求最长回文子串,首先说下什么是回文串,就是正读反读都一样的字符串,比如 "bob", "level", "noon" 等等。那么最长回文子串就是在一个字符串中的那个最长的回文子串。LeetCode 中关于回文串的题共有五道,除了这道,其他的四道为 Palindrome Number,Validate Palindrome,Palindrome Partitioning,Palindrome Partitioning II,我们知道传统的验证回文串的方法就是两个两个的对称验证是否相等,那么对于找回文字串的问题,就要以每一个字符为中心,像两边扩散来寻找回文串,这个算法的时间复杂度是 O(n*n),可以通过 OJ,就是要注意奇偶情况,由于回文串的长度可奇可偶,比如 "bob" 是奇数形式的回文,"noon" 就是偶数形式的回文,两种形式的回文都要搜索,对于奇数形式的,我们就从遍历到的位置为中心,向两边进行扩散,对于偶数情况,我们就把当前位置和下一个位置当作偶数行回文的最中间两个字符,然后向两边进行搜索,参见代码如下:
解法一:
class Solution {
public:
string longestPalindrome(string s) {
if (s.size() < ) return s;
int n = s.size(), maxLen = , start = ;
for (int i = ; i < n - ; ++i) {
searchPalindrome(s, i, i, start, maxLen);
searchPalindrome(s, i, i + , start, maxLen);
}
return s.substr(start, maxLen);
}
void searchPalindrome(string s, int left, int right, int& start, int& maxLen) {
while (left >= && right < s.size() && s[left] == s[right]) {
--left; ++right;
}
if (maxLen < right - left - ) {
start = left + ;
maxLen = right - left - ;
}
}
};
我们也可以不使用子函数,直接在一个函数中搞定,我们还是要定义两个变量 start 和 maxLen,分别表示最长回文子串的起点跟长度,在遍历s中的字符的时候,我们首先判断剩余的字符数是否小于等于 maxLen 的一半,是的话表明就算从当前到末尾到子串是半个回文串,那么整个回文串长度最多也就是 maxLen,既然 maxLen 无法再变长了,计算这些就没有意义,直接在当前位置 break 掉就行了。否则就要继续判断,我们用两个变量 left 和 right 分别指向当前位置,然后我们先要做的是向右遍历跳过重复项,这个操作很必要,比如对于 noon,i在第一个o的位置,如果我们以o为最中心往两边扩散,是无法得到长度为4的回文串的,只有先跳过重复,此时left指向第一个o,right指向第二个o,然后再向两边扩散。而对于 bob,i在第一个o的位置时,无法向右跳过重复,此时 left 和 right 同时指向o,再向两边扩散也是正确的,所以可以同时处理奇数和偶数的回文串,之后的操作就是更新 maxLen 和 start 了,跟上面的操作一样,参见代码如下:
解法二:
class Solution {
public:
string longestPalindrome(string s) {
if (s.size() < ) return s;
int n = s.size(), maxLen = , start = ;
for (int i = ; i < n;) {
if (n - i <= maxLen / ) break;
int left = i, right = i;
while (right < n - && s[right + ] == s[right]) ++right;
i = right + ;
while (right < n - && left > && s[right + ] == s[left - ]) {
++right; --left;
}
if (maxLen < right - left + ) {
maxLen = right - left + ;
start = left;
}
}
return s.substr(start, maxLen);
}
};
此题还可以用动态规划 Dynamic Programming 来解,根 Palindrome Partitioning II 的解法很类似,我们维护一个二维数组 dp,其中 dp[i][j] 表示字符串区间 [i, j] 是否为回文串,当 i = j 时,只有一个字符,肯定是回文串,如果 i = j + 1,说明是相邻字符,此时需要判断 s[i] 是否等于 s[j],如果i和j不相邻,即 i - j >= 2 时,除了判断 s[i] 和 s[j] 相等之外,dp[i + 1][j - 1] 若为真,就是回文串,通过以上分析,可以写出递推式如下:
dp[i, j] = 1 if i == j
= s[i] == s[j] if j = i + 1
= s[i] == s[j] && dp[i + 1][j - 1] if j > i + 1
这里有个有趣的现象就是如果我把下面的代码中的二维数组由 int 改为 vector<vector<int>> 后,就会超时,这说明 int 型的二维数组访问执行速度完爆 std 的 vector 啊,所以以后尽可能的还是用最原始的数据类型吧。
解法三:
class Solution {
public:
string longestPalindrome(string s) {
if (s.empty()) return "";
int n = s.size(), dp[n][n] = {}, left = , len = ;
for (int i = ; i < n; ++i) {
dp[i][i] = ;
for (int j = ; j < i; ++j) {
dp[j][i] = (s[i] == s[j] && (i - j < || dp[j + ][i - ]));
if (dp[j][i] && len < i - j + ) {
len = i - j + ;
left = j;
}
}
}
return s.substr(left, len);
}
};
最后要来的就是大名鼎鼎的马拉车算法 Manacher's Algorithm,这个算法的神奇之处在于将时间复杂度提升到了 O(n) 这种逆天的地步,而算法本身也设计的很巧妙,很值得我们掌握,参见我另一篇专门介绍马拉车算法的博客 Manacher's Algorithm 马拉车算法,代码实现如下:
解法四:
class Solution {
public:
string longestPalindrome(string s) {
string t ="$#";
for (int i = ; i < s.size(); ++i) {
t += s[i];
t += '#';
}
int p[t.size()] = {}, id = , mx = , resId = , resMx = ;
for (int i = ; i < t.size(); ++i) {
p[i] = mx > i ? min(p[ * id - i], mx - i) : ;
while (t[i + p[i]] == t[i - p[i]]) ++p[i];
if (mx < i + p[i]) {
mx = i + p[i];
id = i;
}
if (resMx < p[i]) {
resMx = p[i];
resId = i;
}
}
return s.substr((resId - resMx) / , resMx - );
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/5
类似题目:
Longest Palindromic Subsequence
参考资料:
https://leetcode.com/problems/longest-palindromic-substring/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Longest Palindromic Substring 最长回文串的更多相关文章
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- lintcode :Longest Palindromic Substring 最长回文子串
题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...
- Leetcode0005--Longest Palindromic Substring 最长回文串
[转载请注明]http://www.cnblogs.com/igoslly/p/8726771.html 来看一下题目: Given a string s, find the longest pali ...
- [LeetCode] 5. Longest Palindromic Substring 最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
- [leetcode]5. Longest Palindromic Substring最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 1. Longest Palindromic Substring ( 最长回文子串 )
要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...
- 【翻译】Longest Palindromic Substring 最长回文子串
原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...
随机推荐
- 【分布式】Zookeeper使用--Java API
一.前言 上一篇博客我们通过命令行来操作Zookeper的客户端和服务端并进行相应的操作,这篇主要介绍如何通过API(JAVA)来操作Zookeeper. 二.开发环境配置 首先打开Zookeeper ...
- 你真的会玩SQL吗?实用函数方法汇总
你真的会玩SQL吗?系列目录 你真的会玩SQL吗?之逻辑查询处理阶段 你真的会玩SQL吗?和平大使 内连接.外连接 你真的会玩SQL吗?三范式.数据完整性 你真的会玩SQL吗?查询指定节点及其所有父节 ...
- 用SignalR 2.0开发客服系统[系列5:使用SignalR的中文简体语言包和其他技术点]
前言 交流群:195866844 目录: 用SignalR 2.0开发客服系统[系列1:实现群发通讯] 用SignalR 2.0开发客服系统[系列2:实现聊天室] 用SignalR 2.0开发客服系统 ...
- passport源码研究
passport的验证过程主要依赖具体的验证策略来实现的,比较常用的有session策略.local策略和github策略等,验证逻辑都是在这些策略类中定义的.passport模块的定 ...
- [WinForm]WinForm跨线程UI操作常用控件类大全
前言 在C#开发的WinForm窗体程序开发的时候,经常会使用多线程处理一些比较耗时之类的操作.不过会有一个问题:就是涉及到跨线程操作UI元素. 相信才开始接触的人一定会遇上这个问题. 为了解决这个问 ...
- sql 补齐字段位数
select top 100 lmdte, right(replicate('0',6)+ltrim(lmtme),6) from smtpdsum where lmdte <> 0
- 在centos 服务器上安装phalcon框架 undefined symbol: php_pdo_get_dbh_ce
去git 下载对应版本的框架 命令行: sudo yum install php-devel pcre-devel gcc make 然后使用GIT clone到服务器上,然后 git clone g ...
- 2D动画的制作
通过css3的transform transition可以实现平移,旋转,缩放,拉伸等效果 1.缩放 -webkit-transform: scale(1); -moz-transform: sca ...
- js与native交互
js与native交互 UIWebView Native调用JS,使用stringByEvaluatingJavaScriptFromString来解释执行js脚本. //script即为要执行的js ...
- AndroidProjects个人项目归纳
AndroidProjects 个人总结归纳-目录大纲 Data Binding框架MVVM BaseView CollapseView 更新中... 项目地址:https://github.com/ ...