Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example 1:

Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.

Example 2:

Input: "cbbd"
Output: "bb"

这道题让我们求最长回文子串,首先说下什么是回文串,就是正读反读都一样的字符串,比如 "bob", "level", "noon" 等等。那么最长回文子串就是在一个字符串中的那个最长的回文子串。LeetCode 中关于回文串的题共有五道,除了这道,其他的四道为 Palindrome NumberValidate PalindromePalindrome PartitioningPalindrome Partitioning II,我们知道传统的验证回文串的方法就是两个两个的对称验证是否相等,那么对于找回文字串的问题,就要以每一个字符为中心,像两边扩散来寻找回文串,这个算法的时间复杂度是 O(n*n),可以通过 OJ,就是要注意奇偶情况,由于回文串的长度可奇可偶,比如 "bob" 是奇数形式的回文,"noon" 就是偶数形式的回文,两种形式的回文都要搜索,对于奇数形式的,我们就从遍历到的位置为中心,向两边进行扩散,对于偶数情况,我们就把当前位置和下一个位置当作偶数行回文的最中间两个字符,然后向两边进行搜索,参见代码如下:

解法一:

class Solution {
public:
string longestPalindrome(string s) {
if (s.size() < ) return s;
int n = s.size(), maxLen = , start = ;
for (int i = ; i < n - ; ++i) {
searchPalindrome(s, i, i, start, maxLen);
searchPalindrome(s, i, i + , start, maxLen);
}
return s.substr(start, maxLen);
}
void searchPalindrome(string s, int left, int right, int& start, int& maxLen) {
while (left >= && right < s.size() && s[left] == s[right]) {
--left; ++right;
}
if (maxLen < right - left - ) {
start = left + ;
maxLen = right - left - ;
}
}
};

我们也可以不使用子函数,直接在一个函数中搞定,我们还是要定义两个变量 start 和 maxLen,分别表示最长回文子串的起点跟长度,在遍历s中的字符的时候,我们首先判断剩余的字符数是否小于等于 maxLen 的一半,是的话表明就算从当前到末尾到子串是半个回文串,那么整个回文串长度最多也就是 maxLen,既然 maxLen 无法再变长了,计算这些就没有意义,直接在当前位置 break 掉就行了。否则就要继续判断,我们用两个变量 left 和 right 分别指向当前位置,然后我们先要做的是向右遍历跳过重复项,这个操作很必要,比如对于 noon,i在第一个o的位置,如果我们以o为最中心往两边扩散,是无法得到长度为4的回文串的,只有先跳过重复,此时left指向第一个o,right指向第二个o,然后再向两边扩散。而对于 bob,i在第一个o的位置时,无法向右跳过重复,此时 left 和 right 同时指向o,再向两边扩散也是正确的,所以可以同时处理奇数和偶数的回文串,之后的操作就是更新 maxLen 和 start 了,跟上面的操作一样,参见代码如下:

解法二:

class Solution {
public:
string longestPalindrome(string s) {
if (s.size() < ) return s;
int n = s.size(), maxLen = , start = ;
for (int i = ; i < n;) {
if (n - i <= maxLen / ) break;
int left = i, right = i;
while (right < n - && s[right + ] == s[right]) ++right;
i = right + ;
while (right < n - && left > && s[right + ] == s[left - ]) {
++right; --left;
}
if (maxLen < right - left + ) {
maxLen = right - left + ;
start = left;
}
}
return s.substr(start, maxLen);
}
};

此题还可以用动态规划 Dynamic Programming 来解,根 Palindrome Partitioning II 的解法很类似,我们维护一个二维数组 dp,其中 dp[i][j] 表示字符串区间 [i, j] 是否为回文串,当 i = j 时,只有一个字符,肯定是回文串,如果 i = j + 1,说明是相邻字符,此时需要判断 s[i] 是否等于 s[j],如果i和j不相邻,即 i - j >= 2 时,除了判断 s[i] 和 s[j] 相等之外,dp[i + 1][j - 1] 若为真,就是回文串,通过以上分析,可以写出递推式如下:

dp[i, j] = 1                                               if i == j

= s[i] == s[j]                                if j = i + 1

= s[i] == s[j] && dp[i + 1][j - 1]    if j > i + 1

这里有个有趣的现象就是如果我把下面的代码中的二维数组由 int 改为 vector<vector<int>> 后,就会超时,这说明 int 型的二维数组访问执行速度完爆 std 的 vector 啊,所以以后尽可能的还是用最原始的数据类型吧。

解法三:

class Solution {
public:
string longestPalindrome(string s) {
if (s.empty()) return "";
int n = s.size(), dp[n][n] = {}, left = , len = ;
for (int i = ; i < n; ++i) {
dp[i][i] = ;
for (int j = ; j < i; ++j) {
dp[j][i] = (s[i] == s[j] && (i - j < || dp[j + ][i - ]));
if (dp[j][i] && len < i - j + ) {
len = i - j + ;
left = j;
}
}
}
return s.substr(left, len);
}
};

最后要来的就是大名鼎鼎的马拉车算法 Manacher's Algorithm,这个算法的神奇之处在于将时间复杂度提升到了 O(n) 这种逆天的地步,而算法本身也设计的很巧妙,很值得我们掌握,参见我另一篇专门介绍马拉车算法的博客 Manacher's Algorithm 马拉车算法,代码实现如下:

解法四:

class Solution {
public:
string longestPalindrome(string s) {
string t ="$#";
for (int i = ; i < s.size(); ++i) {
t += s[i];
t += '#';
}
int p[t.size()] = {}, id = , mx = , resId = , resMx = ;
for (int i = ; i < t.size(); ++i) {
p[i] = mx > i ? min(p[ * id - i], mx - i) : ;
while (t[i + p[i]] == t[i - p[i]]) ++p[i];
if (mx < i + p[i]) {
mx = i + p[i];
id = i;
}
if (resMx < p[i]) {
resMx = p[i];
resId = i;
}
}
return s.substr((resId - resMx) / , resMx - );
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/5

类似题目:

Shortest Palindrome

Palindrome Permutation

Palindrome Pairs

Longest Palindromic Subsequence

Palindromic Substrings

参考资料:

https://leetcode.com/problems/longest-palindromic-substring/

https://leetcode.com/problems/longest-palindromic-substring/discuss/2928/Very-simple-clean-java-solution

https://leetcode.com/problems/longest-palindromic-substring/discuss/2923/Simple-C%2B%2B-solution-(8ms-13-lines)

https://leetcode.com/problems/longest-palindromic-substring/discuss/2921/Share-my-Java-solution-using-dynamic-programming

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Longest Palindromic Substring 最长回文串的更多相关文章

  1. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  2. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  3. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  4. Leetcode0005--Longest Palindromic Substring 最长回文串

    [转载请注明]http://www.cnblogs.com/igoslly/p/8726771.html 来看一下题目: Given a string s, find the longest pali ...

  5. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  7. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  8. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  9. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

随机推荐

  1. IE兼容性问题汇总【持续更新中】

    问题:IE8/9不支持Array.indexOf 解决方案 if (!Array.prototype.indexOf) { Array.prototype.indexOf = function(elt ...

  2. .NET跨平台之旅:将QPS 100左右的ASP.NET Core站点部署到Linux服务器上

    今天下午我们将生产环境中一个单台服务器 QPS(每秒请求数)在100左右的 ASP.NET Core 站点部署到了 Linux 服务器上,这是我们解决了在 .NET Core 上使用 EnyimMem ...

  3. android手机旋转屏幕时让GridView的列数与列宽度自适应

    无意中打开了一年前做过的一个android应用的代码,看到里面实现的一个小功能点(如题),现写篇文章做个笔记.当时面临的问题是,在旋转屏幕的时候需要让gridview的列数与宽度能自适应屏幕宽度,每个 ...

  4. 何时使用静态 API

    看了<AutoMapper and the Static Class Debate>,记录一下自己的看法. 在进行API设计时,静态类的使用有时会为设计者带来一些烦恼.应该将某个函数暴露为 ...

  5. iis7.0与asp.net的运行原理

    IIS7.0 IIS7.0主要引入了WAS(Windows Process Activation,不同于6.0中的Web Admin Service),分担了原来w3svc的部分功能,同时为IIS7. ...

  6. .net 一些开源的东东

    来自网络..版权归网络所有..Antlr ----- Website: http://www.antlr.org/ Copyright: Copyright (c) - Terence Parr Li ...

  7. css单行文本与多行溢出文本的省略号问题

    在文字布局和代码编写过程中遇到文本溢出是常有的事,下面总结一下对于单行文本溢出和多行文本溢出省略号的处理. 一.单行文本省略号 <p class="text1"> 这是 ...

  8. 网站logo正确写法,个人拙见,不喜勿喷

    网站logo既要考虑seo又需要用图片代替网站名字,所有H1标签带来的权重还是需要使用 有些人喜欢直接把<H1></H1>标签直接hidden掉,个人喜欢使用css Text- ...

  9. 在xampp中配置dvwa

    DVWA主要是用于学习Web的常见攻击,比如SQL注入.XSS等的一个渗透测试系统,下面我将结合XAMPP来说明它的安装过程. 一.环境 OS:Windows 10 XAMPP:5.6.24 DVWA ...

  10. iOS 性能调试

    性能调优的方式: 1.通过专门的性能调优工具 2.通过代码优化 1. 性能调优工具: 下面针对iOS的性能调优工具进行一个介绍: 1.1 静态分析工具–Analyze 相信iOS开发者在App进行Bu ...