GCD相关
板子:
int gcd(int a, int b) { return b > ? gcd(b, a % b) : a; }
POJ1930
题意:给你一个无限循环小数,给到小数点后 9 位,要求这个数的分数形式。
解法:
要想解决这道题,首先应该了解如何将循环小数化为分数:
一,纯循环小数化分数:循环节的数字除以循环节的位数个 9 组成的整数。例如:
$0.3333……=3/9=1/3$;
$0.285714285714……=285714/999999=2/7$.
二,混循环小数:(例如:$0.24333333……$)不循环部分和循环节构成的的数减去不循环部分的差,再除以循环节位数个 9 添上不循环部分的位数个 0。例如:
$0.24333333…………=(243-24)/900=73/300 $
$0.9545454…………=(954-9)/990=945/990=21/22$
这便是循环小数化成分数的方法,知道这个后,解决这道题也好办了。
代码如下:
#pragma GCC optimize(3)
#include <time.h>
#include <algorithm>
#include <bitset>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
using namespace std;
const double EPS = 1e-;
const int INF = ;
const long long LLINF = ;
const double PI = acos(-1.0); inline int READ() {
char ch;
while ((ch = getchar()) < || < ch)
;
int ans = ch - ;
while ( <= (ch = getchar()) && ch <= )
ans = (ans << ) + (ans << ) + ch - ;
return ans;
} #define REP(i, a, b) for (int i = (a); i <= (b); i++)
#define PER(i, a, b) for (int i = (a); i >= (b); i--)
#define FOREACH(i, t) for (typeof(t.begin()) i = t.begin(); i != t.end(); i++)
#define MP(x, y) make_pair(x, y)
#define PB(x) push_back(x)
#define SET(a) memset(a, -1, sizeof(a))
#define CLR(a) memset(a, 0, sizeof(a))
#define MEM(a, x) memset(a, x, sizeof(a))
#define ALL(x) begin(x), end(x)
#define LL long long
#define Lson (index * 2)
#define Rson (index * 2 + 1)
#define pii pair<int, int>
#define pll pair<LL, LL>
#define MOD ((int)1000000007)
#define MAXN 20 + 5
///**********************************START*********************************///
string ss, sn; char s[MAXN], ns[MAXN];
int nex[MAXN]; void get_next(char* p, int next[]) {
int pLen = strlen(p) + ; //要求循环节长度时这里才+1
next[] = -;
int k = -;
int j = ;
while (j < pLen - ) {
if (k == - || p[j] == p[k]) {
++j;
++k;
if (p[j] != p[k])
next[j] = k;
else
next[j] = next[k];
} else {
k = next[k];
}
}
} int gcd(int a, int b) { return b > ? gcd(b, a % b) : a; } void cal_cal(int len) {
int up = , down = ;
for (int i = len - ; i >= ; i--)
up += int(s[i] - '') * pow(, len - i - );
for (int i = ; i < len; i++) down += * pow(, i);
int g = gcd(up, down);
printf("%d/%d\n", up / g, down / g);
return;
} void cal_cal2(int st, int len) {
char tmp[];
int up = , down = ;
int a, b; for (int i = ; i < st; i++) tmp[i] = s[i];
tmp[st] = '\0';
a = atoi(tmp);
for (int i = st; i < st + len; i++) tmp[i - st] = s[i];
tmp[len] = '\0';
b = atoi(tmp); up = a * pow(, len) + b - a;
int pos = ;
for (int i = ; i < len; i++) tmp[pos++] = '';
for (int i = ; i < st; i++) tmp[pos++] = '';
down = atoi(tmp);
int g = gcd(up, down);
printf("%d/%d\n", up / g, down / g);
return;
} int main() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif // !ONLINE_JUDGE
while (cin >> ss) {
if (ss.size() == ) break;
int pos = ;
for (int i = ; ss[i] != '.'; i++) s[pos++] = ss[i];
s[pos] = '\0';
int flag = ; // 1为全循环,2为混合循环
get_next(s, nex);
int len = pos - nex[pos];
if (len != pos) {
cal_cal(len);
} else {
int st;
for (st = ; st < pos; st++) {
int nlen = ;
for (int i = st; i < pos; i++) {
ns[nlen++] = s[i];
}
CLR(nex);
get_next(ns, nex);
if (nlen - nex[nlen] != nlen) {
cal_cal2(st, nlen);
break;
} else
continue;
}
}
}
return ;
}
GCD相关的更多相关文章
- CodeForces - 1059C Sequence Transformation (GCD相关)
Let's call the following process a transformation of a sequence of length nn. If the sequence is emp ...
- 4.3 多线程进阶篇<中>(GCD)
更正:队列名称的作用的图中,箭头标注的有些问题,已修正 本文并非最终版本,如有更新或更正会第一时间置顶,联系方式详见文末 如果觉得本文内容过长,请前往本人 “简书” 本文源码 Demo 详见 Gith ...
- 一些gcd计数问题
数论什么的全都忘光了吧QAQ 做了几道简单的题练习一下. bzoj1101: [POI2007]Zap 求有多少对数满足 gcd(x,y)=d, 1<=x<=a, 1<=y<= ...
- iOS GCD 编程小结
一.简单介绍 1.GCD简介? 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数 2.GCD优势 GCD是苹果公司为多核的并行运算提出的 ...
- iOS开发多线程篇—GCD介绍
iOS开发多线程篇—GCD介绍 一.简单介绍 1.什么是GCD? 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数 2.GCD的优势 G ...
- GCD下的几种实现同步的方式
GCD多线程下,实现线程同步的方式有如下几种: 1.串行队列 2.并行队列 3.分组 4.信号量 实例: 去网上获取一张图片并展示在视图上. 实现这个需求,可以拆分成两个任务,一个是去网上获取图片,一 ...
- iOS多线程知识总结--GCD
iOS多线程知识总结--GCD 1. iOS中苹果提供4钟方案来帮助我们实现多线程: (1) 纯C语言的pthread,偏底层,需要程序员手动管理线程的生命周期,基本不用. (2) OC语言的NSTr ...
- ios开发多线程--GCD
引言 虽然GCD使用很广,而且在面试时也经常问与GCD相关的问题,但是我相信深入理解关于GCD知识的人肯定不多,大部分都是人云亦云,只是使用过GCD完成一些很简单的功能.当然,使用GCD完成一些简单的 ...
- IOS 多线程之GCD
参考:http://www.cnblogs.com/wendingding/p/3806821.html <<Objective-C基础教程>> 第二版 一 简介 GCD 全称 ...
随机推荐
- Shell常用命令之yum
介绍 yum命令是在Fedora和RedHat以及SUSE中基于rpm的软件包管理器,它可以使系统管理人员交互和自动化地更细与管理RPM软件包,能够从指定的服务器自动下载RPM包并且安装,可以自动处理 ...
- python 学习笔记2 匿名函数
# 匿名函数 lambda a,b : a+b# a.j.from functools import reduce students = [{'name': '张三', 'age': 18, 'hei ...
- springboot之整合基本的jdbc并操作Mysql数据库
对于数据访问层,无论是SQL还是NOSQL,springboot默认采用整合spring data方式进行统一处理,添加大量自动配置,屏蔽了许多设置,引入各种xxxTemplate,xxxReposi ...
- Codeforces Round #617 (Div. 3) String Coloring(E1.E2)
(easy version): 题目链接:http://codeforces.com/contest/1296/problem/E1 题目一句话就是说,两种颜色不同的字符可以相互换位, 问,对这字符串 ...
- 吐血推荐珍藏的IDEA插件
之前给大家推荐了一些我自己常用的VS Code插件,很多同学表示很受用,并私信我说要再推荐一些IDEA插件.作为一名职业Java程序员/业余js开发者,我平时还是用IDEA比较多,所以也确实珍藏了一些 ...
- Java12可用新特性一览,了解一下没有错
你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it well enough ...
- Linq扩展方法获取单个元素
在使用Linq 提供的扩展方法时,First(OrDefault), Single(OrDefault), Last(OrDefault)都具有返回单个元素的功能.MSDN对这些方法的描述只有功能说明 ...
- Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)
链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...
- [Redis-CentOS7]Redis设置连接密码(九)
设置Redis密码 修改/etc/redis.conf 一定要强密码redis为内存存储 抗暴力破解强 requirepass password 重启服务 systemctl restart redi ...
- 杭电-------2052Picture(C语言)
#include<stdio.h> int main() { int width, height; int i, j; while (~scanf("%d %d", & ...