bzoj2961 共点圆 (CDQ分治, 凸包)
/*
可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它
看看是否是在合法的那一面
然后cdq分治就可以了
代码基本是抄的,
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<iostream>
#include<cmath>
#define ll long long
#define M 500050
#define mmp make_pair
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
const double inf = pow(2, 80), eps = 1e-10;
int q1[M], q2[M], ans[M], tot, flag, n;
struct Vec {
double x, y;
};
struct Note {
Vec x;
int op, id, qid;
double k;
bool operator < (const Note &b) const {
return this->k < b.k;
}
} e[M], tmp[M];
double sqr(double x) {
return x * x;
}
double slope(Vec a, Vec b) {
if(fabs(a.x - b.x) < eps) return inf;
return (b.y - a.y) / (b.x - a.x);
}
double dis(Vec a, Vec b) {
return sqr(a.x - b.x) + sqr(a.y - b.y);
}
double R(Vec a) {
return sqr(a.x) + sqr(a.y);
}
void cdq(int l, int r) {
if(l == r) return;
int mid = (l + r) >> 1, p1 = l, p2 = mid + 1, h1 = 1, h2 = 1, t1 = 0, t2 = 0;
for(int i = l; i <= r; i++) {
if(e[i].id <= mid) tmp[p1++] = e[i];
else tmp[p2++] = e[i];
}
memcpy(e + l, tmp + l, sizeof(e[0]) * (r - l + 1));
cdq(l, mid);
for(int i = l; i <= mid; i++) {
if(e[i].op) continue;
while(h1 < t1 && slope(e[q1[t1]].x, e[i].x) < slope(e[q1[t1 - 1]].x, e[q1[t1]].x)) t1--;
q1[++t1] = i;
while(h2 < t2 && slope(e[q2[t2]].x, e[i].x) > slope(e[q2[t2 - 1]].x, e[q2[t2]].x)) t2--;
q2[++t2] = i;
}
for(int i = mid + 1; i <= r; i++) {
if(!e[i].op) continue;
if(e[i].x.y > 0) {
while(h1 < t1 && slope(e[q1[h1]].x, e[q1[h1 + 1]].x) < e[i].k) h1++;
if(h1 <= t1 && dis(e[q1[h1]].x, e[i].x) > R(e[q1[h1]].x)) ans[e[i].qid] = 0;
} else {
while(h2 < t2 && slope(e[q2[t2 - 1]].x, e[q2[t2]].x) < e[i].k) t2--;
if(h2 <= t2 && dis(e[q2[t2]].x, e[i].x) > R(e[q2[t2]].x)) ans[e[i].qid] = 0;
}
}
cdq(mid + 1, r);
p1 = l, p2 = mid + 1;
for(int i = l; i <= r; i++) {
if(p2 > r || p1 <= mid && e[p1].x.x < e[p2].x.x) tmp[i] = e[p1++];
else tmp[i] = e[p2++];
}
memcpy(e + l, tmp + l, sizeof(e[0]) * (r - l + 1));
}
int main() {
n = read();
for(int i = 1; i <= n; i++) {
e[i].op = read();
scanf("%lf%lf", &e[i].x.x, &e[i].x.y);
e[i].id = i;
if(e[i].op) {
e[i].qid = ++tot;
if(flag) ans[tot] = 1;
if(e[i].x.y) e[i].k = -e[i].x.x / e[i].x.y;
else e[i].k = inf;
} else flag = 1;
}
sort(e + 1, e + n + 1);
cdq(1, n);
for(int i = 1; i <= tot; i++) puts(ans[i] ? "Yes" : "No");
return 0;
}
bzoj2961 共点圆 (CDQ分治, 凸包)的更多相关文章
- [BZOJ2961] 共点圆 [cdq分治+凸包]
题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...
- BZOJ2961 共点圆[CDQ分治]
题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...
- BZOJ2961: 共点圆(CDQ分治+凸包)
题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...
- bzoj2961 共点圆 bzoj 4140
题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...
- Bzoj2149拆迁队:cdq分治 凸包
国际惯例的题面:我们考虑大力DP.首先重新定义代价为:1e13*选择数量-(总高度+总补偿).这样我们只需要一个long long就能维护.然后重新定义高度为heighti - i,这样我们能选择高度 ...
- BZOJ2961: 共点圆
好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...
- [BZOJ2961]共点圆-[凸包+cdq分治]
Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...
- bzoj 2961 共点圆 cdq+凸包+三分
题目大意 两种操作 1)插入一个过原点的圆 2)询问一个点是否在所有的圆中 分析 在圆中则在半径范围内 设圆心 \(x,y\) 查询点\(x_0,y_0\) 则\(\sqrt{(x-x_0)^2+(y ...
- 【bzoj2961】共点圆 k-d树
更新:此题我的代码设置eps=1e-8会WA,现在改为1e-9貌似T了 此题网上的大部分做法是cdq分治+凸包,然而我觉得太烦了,于是自己口胡了一个k-d树做法: 加入一个圆$(x,y)$,直接在k- ...
随机推荐
- VNC Viewer连接打开remote display的VMware虚拟机出现闪退
只需修改vnc option里面Advanced-->expert-->ColourLevel的值为“rgb222” or “full”即可. 说明:rgb111--8 colours,r ...
- dubbo的三种运行方式
1.Tomcat容器内启动 pom.xml 文件中 <build> <resources> <resource> <directory>src/main ...
- 大数据离线分析平台 JSSDK数据收集引擎编写
JsSDK设计规则在js sdk中我们需要收集launch.pageview.chargeRequest和eventDuration四种数据,所以我们需要在js中写入四个方法来分别收集这些数据,另外我 ...
- less命令详解
Linux less命令 less 与 more 类似,但使用 less 可以随意浏览文件,而 more 仅能向前移动,却不能向后移动,而且 less 在查看之前不会加载整个文件 语法: less [ ...
- 阅读<<HDMI 1.4/2.0 Transmitter Subsystem V2.0>>笔记
阅读<<HDMI 1.4/2.0 Transmitter Subsystem V2.0>>笔记 1.Subsystem Block Diagram 2.HDMI TX Subs ...
- 了解ARM+Android
第一部分 认识ARM,方案商,GPU , 芯片 1.1 ARM ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能.廉价.耗能低的RISC处理器.相关 ...
- WASAPI、DirectSound/DS、WaveOut、Kernel Streaming/KS
先放结论: ASIO:硬件支持+对应驱动程序 DS:兼容性最好,一般也是默认的. WASAPI:是Vista之后的,较佳选择输出方式. 再来详细看: ASIO.WDM都是指音频通道,就是音频数据走的路 ...
- 黄聪:利用ImageMagicK给图片加水印
1 图片水印处理 假设把名为logo.gif的水印图标添加在原始图片(src.jpg)右下角,且水印的下边缘距原始图片10像素.右边缘距原始图片5像素.使用如下命令即可: convert src.jp ...
- DS图--最小生成树
题目描述 根据输入创建无向网.分别用Prim算法和Kruskal算法构建最小生成树.(假设:输入数据的最小生成树唯一.) 输入 顶点数n n个顶点 边数m m条边信息,格式为:顶点1 顶点2 权值 P ...
- Java使用 SFTP实现文件上传下载
package com.lijy.util; import com.jcraft.jsch.Channel; import com.jcraft.jsch.ChannelSftp; import co ...