浅谈CPU和GPU的区别
导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
“为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码? ”
以下是比较准确靠谱的回答:
1、现在更多被需要的依然是CPU,只是GPU在大规模并发计算中体现出其一技之长所以应用范围逐渐变得广泛,并成为近些年的热点话题之一。
为什么二者会有如此的不同呢?首先要从CPU和GPU的区别说起。
CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。
GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache。而CPU不仅被Cache占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分。
所以与CPU擅长逻辑控制和通用类型数据运算不同,GPU擅长的是大规模并发计算,这也正是密码破解等所需要的。所以GPU除了图像处理,也越来越多的参与到计算当中来。
2、很久以前,大概2000年那时候,显卡还被叫做图形加速卡。一般叫做加速卡的都不是什么核心组件,和现在苹果使用的M7协处理器地位差不多。这种东西就是有了更好,没有也不是不行,只要有个基本的图形输出就可以接显示器了。在那之前,只有一些高端工作站和家用游戏机上才能见到这种单独的图形处理器。后来随着PC的普及,游戏的发展和Windows这样的市场霸主出现,简化了图形硬件厂商的工作量,图形处理器,或者说显卡才逐渐普及起来。
GPU的工作大部分就是计算量大,但没什么技术含量,而且要重复很多很多次。就像你有个工作需要算几亿次一百以内加减乘除一样,最好的办法就是雇上几十个小学生一起算,一人算一部分,反正这些计算也没什么技术含量,纯粹体力活而已。而CPU就像老教授,积分微分都会算,就是工资高,一个老教授资顶二十个小学生,你要是富士康你雇哪个?GPU就是这样,用很多简单的计算单元去完成大量的计算任务,纯粹的人海战术。这种策略基于一个前提,就是小学生A和小学生B的工作没有什么依赖性,是互相独立的。很多涉及到大量计算的问题基本都有这种特性,比如你说的破解密码,挖矿和很多图形学的计算。这些计算可以分解为多个相同的简单小任务,每个任务就可以分给一个小学生去做。但还有一些任务涉及到“流”的问题。比如你去相亲,双方看着顺眼才能继续发展。总不能你这边还没见面呢,那边找人把证都给领了。这种比较复杂的问题都是CPU来做的。
总而言之,CPU和GPU因为最初用来处理的任务就不同,所以设计上有不小的区别。而某些任务和GPU最初用来解决的问题比较相似,所以用GPU来算了。GPU的运算速度取决于雇了多少小学生,CPU的运算速度取决于请了多么厉害的教授。教授处理复杂任务的能力是碾压小学生的,但是对于没那么复杂的任务,还是顶不住人多。当然现在的GPU也能做一些稍微复杂的工作了,相当于升级成初中生高中生的水平。但还需要CPU来把数据喂到嘴边才能开始干活,究竟还是靠CPU来管的。
3、就目前的计算机架构,GPU只能称作是小众。GPU作为后来者,出现的太晚了,计算机架构已经定型,不太可能撼动 Intel 的霸主地位,而且Intel 一定会借着先天优势打压其他竞争对手。 最近bitcoin被媒体炒作的太过了,出现在了公众的视野中。媒体写新闻的那群人只要是写点和技术沾边的文章,就能暴露他们的无知,倒霉的还是无辜的群众。
在计算机上运行的程序从性能的角度来说大致可分为三类:(1) I/O intensive; (2) Memory intensive 以及 (3) Compute-intensive。
(1)I/O intensive的程序其性能瓶颈是I/O,也就是说程序运行的大部分时间花在了硬盘读写/网络通信上,而I/O处在计算机体系结构金字塔的最底层,速度非常慢。最近炒的很火的big data 讨论的就是这一类应用程序。几百TB 甚至到PB级别的数据往哪搁,只能放在硬盘上。一台机器容量太小CPU太少怎么办,搞几百台甚至上千台机器用网线连起来分布处理。所以这块全是I/O, 现在大的互联网公司不多搞几个上千节点的集群肯定撑不住。
(2)Memory intensive的程序其性能瓶颈在内存访问,程序中有大量的随机访问内存的操作,但是基本没有I/O, 这类程序已经比第一类程序快一个数量级了,但是和寄存器的速度还是没法比。目前大部分应用程序都属于这类。个人电脑里装的的各种软件基本就是这类,如果有点I/O, 立刻就会非常得卡。
以上提到的这两类程序的应用最广泛,涵盖了大部分有用的计算机软件,但遗憾的是GPU在这两块毫无用处, GPU只有在计算密集型的程序有些作用。I/O是瓶颈的程序,花在计算的时间可以忽略不计,再怎么用GPU加速也没用。 含有大量内存随机访问的程序也不适合在GPU上执行,大量的随机访问甚至可以使GPU的行为由并行变为串行。
什么类型的程序适合在GPU上运行?
(1)计算密集型的程序。所谓计算密集型(Compute-intensive)的程序,就是其大部分运行时间花在了寄存器运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。可以做一下对比,读内存的延迟大概是几百个时钟周期;读硬盘的速度就不说了,即便是SSD, 也实在是太慢了。
(2)易于并行的程序。GPU其实是一种SIMD(Single Instruction Multiple Data)架构, 他有成百上千个核,每一个核在同一时间最好能做同样的事情。
满足以上两点,就可以用GPU做运算了。 不过你还得先用CUDA或者Open CL 把能在GPU上运行的程序写出来, 这也是很麻烦的,写一下就知道了。 而且GPU的架构比较特殊,要想写出高效率的程序,要花很多很多时间。想说写GPU程序是一件很蛋疼的事情。
GPU在某些地方很有用,但应用面比较窄,远远没有某公司声称的那么有用。当今还是Intel的天下, 现在计算机的速度已经很快了,计算其实已经不是什么大问题。I/O才是最需要解决的问题。 记得曾经看过N家的GTC峰会,黄某人吹得神乎其神,连我都被感动了,多少多少T FLOPS的计算速度。 程序运行时间从100 秒 变成 1秒 其实没多重要,你倒杯水的功夫就100秒了。运行时间从100天缩短到1天才是大贡献。 前者就是GPU做的事情,后者才是我们真正需要的。
浅谈CPU和GPU的区别的更多相关文章
- 浅谈 unix, linux, ios, android 区别和联系
浅谈 unix, linux, ios, android 区别和联系 网上的答案并不是很好,便从网上整理的相对专业的问答,本人很菜,大佬勿喷 UNIX 和 Linux UNIX 操作系统(尤尼斯) ...
- cpu和gpu的区别和联系是什么
cpu和gpu的区别和联系是什么 一.总结 一句话总结:CPU:复杂任务,核少,做串行,计算能力只是CPU很小的一部分,处理复杂逻辑: GPU:简单任务,核多,做并行(大吞吐量),做显卡的图象单元计算 ...
- 浅谈cookie 和session 的区别
具体来说 cookie 是保存在“客户端”的,而session是保存在“服务端”的 cookie 是通过扩展http协议实现的 cookie 主要包括 :名字,值,过期时间,路径和域: 如果cooki ...
- 浅谈Log4j和Log4j2的区别
相信很多程序猿朋友对log4j都很熟悉,log4j可以说是陪伴了绝大多数的朋友开启的编程.我不知道log4j之前是用什么,至少在我的生涯中,是log4j带我开启的日志时代. log4j是Apache的 ...
- CPU 和 GPU 的区别
作者:知乎用户链接:https://www.zhihu.com/question/19903344/answer/96081382来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- CPU和GPU的区别
个人认为CPU和GPU各有自己的适应领域.CPU(Central Processing Unit)计算核心较少,通常是双核.四核.八核,但是拥有大量的共享缓存.预测.乱序执行等优化,可以做逻辑非常复杂 ...
- 五 浅谈CPU 并行编程和 GPU 并行编程的区别
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺 ...
- 第五篇:浅谈CPU 并行编程和 GPU 并行编程的区别
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺 ...
- 浅谈CPU,GPU,TPU,DPU,NPU,BPU
https://www.sohu.com/a/191538165_777155 A12宣传的每秒5万亿次运算,用计算机语言描述就是5Tops. 麒麟970 NPU,根据资料是 1.92Tops. 麒麟 ...
随机推荐
- NPOI操作EXCEL(二)——大量不同模板时设计方式
上一篇文章介绍了一些NPOI的基础接口,我们现在就来看看具体怎么用NPOI来解析一个EXCEL. 博主现在有这么一堆excel需要解析数据入库: 当然这只是员工的简要模板,还有很多其他的模板.我们可以 ...
- 【WCF】wcf不支持的返回类型
亲测不支持 DateView 不支持函数重载 参看:http://www.cnblogs.com/zeroone
- 一个c#的输入框函数
private static string InputBox(string Caption, string Hint, string Default) { Form InputForm = new F ...
- 分享一些自己的学习过程和学习方法(来自daimajia)
每天,都会有人在微博上私信我,问我关于学习和成长的问题.这种问题我一般都不会回复某个j,毕竟每个人的情况不一样,每个人对待事物的性格也不一样,我不能夸下海口的说,你看某本书几个月就能如何如何,我能做的 ...
- Linux用户管理(centos)
useradd testuser; 添加用户 testuser为用户名 passwd testuser; 修改用户密码 提示两次输入密码 赋予root权限 修改 /etc/sudoers 文件,找 ...
- AC自动机 HDU 3065
大概就是裸的AC自动机了 #include<stdio.h> #include<algorithm> #include<string.h> #include< ...
- 2017年"程序媛和工程狮"绝对不能忽视的编程语言、框架和工具
2017年"程序媛和工程狮"绝对不能忽视的编程语言.框架和工具 在过去的一年里,软件开发行业继续大踏步地向前迈进.回顾 2016 年,我们看到了更多新兴的流行语言.框架和工具, ...
- C++中重定义的问题——问题的实质是声明和定义的关系以及分离式编译的原理
这里的问题实质是我们在头文件中直接定义全局变量或者函数,却分别在主函数和对应的cpp文件中包含了两次,于是在编译的时候这个变量或者函数被定义了两次,问题就出现了,因此,我们应该形成一种编码风格,即: ...
- 【codeforces 696B】 Puzzles
http://codeforces.com/problemset/problem/696/B (题目链接) 题意 给出一棵树,随机dfs遍历这棵树,求解每个节点的期望dfs序. Solution 考虑 ...
- 通过SmartGit把java maven项目传到码云
一.首先先在码云上新建一个项目 二.复制项目的链接 三.打开SmartGit,点击clone 4.把复制的项目链接粘上去 5.然后点两次next,选择一个路径,finish 6.打开刚刚选择的路径,我 ...