整除分块

参考资料:整除分块_peng-ym

OI生涯中的各种数论算法的证明

公式

求:\(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor\)

对于每个\(\lfloor\frac{n}{i}\rfloor\)值相同的区间\([l,r]\)有\(r=n/(n/l)\),即对于\(\forall x\in [i,n/(n/i)]\)有\(x=\lfloor\frac{n}{i}\rfloor\).

时间复杂度

\(O(\sqrt{n})\)

代码

for(int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
ans += (r - l + 1) * (n / l);
}

异或性质

参考资料:

求一段连续自然数的异或结果

自然数异或前缀和

\[\bigoplus_{i=1}^{n} =\begin{cases}1, n\bmod4=1\\x+1, n\bmod4=2 \\0, n\bmod4=3\\x, n\bmod4=0\end{cases}
\]

Problem

异或约数和

51nod

定义\(f(i)\)为\(i\)的所有约数的异或和,给定\(n(1\leq n\leq 10^{14})\),求 \(f(1)xorf(2)xorf(3)xor...xorf(n)\)(其中\(xor\)表示按位异或)

先推出$$Ans=\bigoplus_{i=1}^{n}i ,(n/i)\bmod 2=0$$

用整除分块和异或前缀和

#include <iostream>
#include <cstdio>
#define ll long long using namespace std;
ll ans, n;
ll f(ll x) {
if(x % 4 == 1) return 1LL;
if(x % 4 == 2) return x + 1LL;
if(x % 4 == 3) return 0LL;
if(x % 4 == 0) return x;
}
int main()
{
cin >> n;
for(ll l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
if((n / l) % 2 == 1) ans ^= f(r) ^ f(l - 1);
}
// for(int i = 1; i <= n; i++)
// ans ^= (n / i) % 2 == 0 ? 0 : i;
cout << ans << endl;
return 0;
}

[笔记] 整除分块 & 异或性质的更多相关文章

  1. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  2. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  3. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  4. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  5. 数学--数论--整除分块(巨TM详细,学不会,你来打我)

    1.概念 从一道例题说起 在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题: 已知正整数n,求∑i ...

  6. P2424 约数和 【整除分块】

    一.题目 P2424 约数和 二.分析 因为都是加法,那么肯定有的一个性质,即前缀和的思想,就是$$ { ans =\sum_{i=1}^y f(i)} - {\sum_{i=1}^x f(i)}   ...

  7. P3235-[HNOI2014]江南乐【整除分块,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/P3235 题目大意 \(T\)组游戏,固定给出\(F\).每组游戏有\(n\)个石头,每次操作的人可以选择一个数量不 ...

  8. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  9. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

随机推荐

  1. MyBatis动态添加—trim标签

    做添加时,部分字段有值,没值的字段不添加,这就是动态添加,使用 trim 标签就可以实现. <insert id="insertSysUser" parameterType= ...

  2. Java枚举的下标值

    java中枚举值下标默认从0开始,可以用ordinal()这个方法获取下标值. public enum Sex { MALE(1,"男"),FEMALE(2,"女&quo ...

  3. Java 初级面试题及答案

    1.Java中的重载与重写有什么区别 重载(Overload)是让类以统一的方式处理不同类型数据的一种手段,实质表现就是多个具有不同的参数个数或者类型的同名函数(返回值类型可随意,不能以返回类型作为重 ...

  4. java基础进阶二:HashMap实现原理分析

    HashMap实现原理分析 1. HashMap的数据结构 数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端. 数组 数组存储区间是连续的,占用内存严重,故空间复杂的很大.但数组的二 ...

  5. angular.js 教程 -- 实例讲解

    angular.js AngularJS [1] 诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中.Ang ...

  6. IDEA项目搭建四——使用Mybatis实现Dao层

    一.引入mybatis及mysql的jar包 可以从阿里云上面查找版本,db操作放在dao层所以打开该层的pom.xml文件,找到<dependencies>节点增加两个引入 <de ...

  7. JSP隐含对象

    1.out隐含对象 (输出对象) 直接用于在JSP页面输出内容 javax.servlet.jsp.JspWriter(抽象类) 继承自java.io.Writer JSP中的out对象最终被转化成s ...

  8. Session["Write"] = "Write";

    Session["Write"] = "Write"; 将Session使用起来,建立起回话,这样才能保证会话中保持SessionID不变,否者,如果你直接使用 ...

  9. 使用 Visual Studio Team Services 和 IIS 创建持续集成管道

    若要将应用程序开发的生成.测试和部署阶段自动化,可以使用持续集成和部署 (CI/CD) 管道. 本教程介绍如何在 Azure 中使用 Visual Studio Team Services 和 Win ...

  10. SQL Server 合并复制的Article可以指定单个对象的更新方向

    如下所示,这是SQL Server中一个合并复制发布端的Article: 我们可以在Article中选择一个对象,比如这里我们选择MD.Car表,点击鼠标右键,选择"Set Properti ...