整除分块

参考资料:整除分块_peng-ym

OI生涯中的各种数论算法的证明

公式

求:\(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor\)

对于每个\(\lfloor\frac{n}{i}\rfloor\)值相同的区间\([l,r]\)有\(r=n/(n/l)\),即对于\(\forall x\in [i,n/(n/i)]\)有\(x=\lfloor\frac{n}{i}\rfloor\).

时间复杂度

\(O(\sqrt{n})\)

代码

for(int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
ans += (r - l + 1) * (n / l);
}

异或性质

参考资料:

求一段连续自然数的异或结果

自然数异或前缀和

\[\bigoplus_{i=1}^{n} =\begin{cases}1, n\bmod4=1\\x+1, n\bmod4=2 \\0, n\bmod4=3\\x, n\bmod4=0\end{cases}
\]

Problem

异或约数和

51nod

定义\(f(i)\)为\(i\)的所有约数的异或和,给定\(n(1\leq n\leq 10^{14})\),求 \(f(1)xorf(2)xorf(3)xor...xorf(n)\)(其中\(xor\)表示按位异或)

先推出$$Ans=\bigoplus_{i=1}^{n}i ,(n/i)\bmod 2=0$$

用整除分块和异或前缀和

#include <iostream>
#include <cstdio>
#define ll long long using namespace std;
ll ans, n;
ll f(ll x) {
if(x % 4 == 1) return 1LL;
if(x % 4 == 2) return x + 1LL;
if(x % 4 == 3) return 0LL;
if(x % 4 == 0) return x;
}
int main()
{
cin >> n;
for(ll l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
if((n / l) % 2 == 1) ans ^= f(r) ^ f(l - 1);
}
// for(int i = 1; i <= n; i++)
// ans ^= (n / i) % 2 == 0 ? 0 : i;
cout << ans << endl;
return 0;
}

[笔记] 整除分块 & 异或性质的更多相关文章

  1. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  2. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  3. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  4. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  5. 数学--数论--整除分块(巨TM详细,学不会,你来打我)

    1.概念 从一道例题说起 在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题: 已知正整数n,求∑i ...

  6. P2424 约数和 【整除分块】

    一.题目 P2424 约数和 二.分析 因为都是加法,那么肯定有的一个性质,即前缀和的思想,就是$$ { ans =\sum_{i=1}^y f(i)} - {\sum_{i=1}^x f(i)}   ...

  7. P3235-[HNOI2014]江南乐【整除分块,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/P3235 题目大意 \(T\)组游戏,固定给出\(F\).每组游戏有\(n\)个石头,每次操作的人可以选择一个数量不 ...

  8. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  9. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

随机推荐

  1. JS 相关记录(scrollTo,JSON)

    1. window.scrollTo window.scrollTo 有2种语法,比较常见的时候 window.scrollTo(x-coord,y-coord ),其中 x轴坐标与y坐标 第二种为 ...

  2. 【代码笔记】iOS-NSFileManager

    一,代码. #import "ViewController.h" @interface ViewController () @end @implementation ViewCon ...

  3. 【代码笔记】iOS-json文件的使用

    一,工程图. 二,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the ...

  4. JS中判断数据类型的几种方法

    1⃣️首先我们来了解一下js中的数据类型 1.基本数据类型:Undefined.Null.Boolean.Number.String(值类型) 2.复杂数据类型:Object(引用类型) (值类型和引 ...

  5. SQLServer 学习笔记之超详细基础SQL语句 Part 8

    Sqlserver 学习笔记 by:授客 QQ:1033553122 -----------------------接Part 7------------------- --触发器str_trigge ...

  6. css字体更小 css比12px更小的方法

    <span style="margin-top: 0;-webkit-transform-origin-x: 0;-webkit-transform: scale(0.90);&quo ...

  7. SQL2008R2数据库日志太大收缩方法

    1.登陆项目平台数据库服务器.双击SQL Server Management Studio打开数据库管理.登陆数据库 2.如下图,打开数据库属性窗口 3.如下图,更改数据库恢复模式 4.如下图,收缩数 ...

  8. 数组、ArrayList、链表、LinkedList

    数组   数组 数组类型 不可重复 无序(线性查找) 可重复(找到第一个即可) 无序(线性查找) 不可重复 有序(二分查找) 可重复(找到第一个即可) 有序(二分查找) 插入 O(N) O(1) O( ...

  9. Expo大作战(十二)--expo中的自定义样式Custom font,以及expo中的路由Route&Navigation

    简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...

  10. go语言练习:go实现md5

    package main import ( "crypto/md5" "fmt" ) func main() { md5_ob := md5.New() md5 ...