传送门

其实标签只是搞笑的。

没那么难。

二项式反演只是杀鸡用牛刀而已。

这道题也只是让你n≤20n\le20n≤20的错排数而已。

还记得那个O(n)O(n)O(n)的递推式吗?

没错那个方法比我今天用的要快一些。


言归正传。

回忆一下二项式反演的式子:

fn=∑i=0n(ni)gif_n=\sum_{i=0}^n\binom{n}{i}g_ifn​=∑i=0n​(in​)gi​

=>gn=∑i=0n((−1)i(nn−i)fi)g_n=\sum_{i=0}^n((-1)^i\binom{n}{n-i}f_i)gn​=∑i=0n​((−1)i(n−in​)fi​)

证明很简单。

只用把第一个式子成立的条件带到第二个等式的右边就可以了。

然后这道题怎么用呢?

我们令fif_ifi​表示iii张牌任意排列的总方案数。

gig_igi​表示iii张牌全部错排的方案数。

那么根据分类计数的原理显然有:

fn=∑i=0ngi=n!f_n=\sum_{i=0}^ng_i=n!fn​=∑i=0n​gi​=n!

于是gn=∑i=0n((−1)i(ni)fi)=∑i=0n((−1)in!(n−i)!)g_n=\sum_{i=0}^n((-1)^i\binom{n}{i}f_i)=\sum_{i=0}^n((-1)^i\frac{n!}{(n-i)!})gn​=∑i=0n​((−1)i(in​)fi​)=∑i=0n​((−1)i(n−i)!n!​)

做完了。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=21;
ll fac[N];
int n;
int main(){
	fac[0]=1;
	for(int i=1;i<=20;++i)fac[i]=fac[i-1]*i;
	while(~scanf("%d",&n)){
		ll ans=0,tmp=1;
		for(int i=0;i<=n;++i,tmp*=-1)ans+=tmp*fac[n]/fac[i];
		cout<<ans<<'\n';
	}
	return 0;
}

2018.11.07 hdu1465不容易系列之一(二项式反演)的更多相关文章

  1. 2018.11.07 NOIP模拟 数独(模拟)

    传送门 sbsbsb签到题. 读题时间比写题时间长系列. 写一个checkcheckcheck函数来检验当前时间段第(i,j)(i,j)(i,j)号格子能否放入kkk就行了. 代码

  2. Unity进阶----AssetBundle_03(2018/11/07)

    1. 为啥有AB包? 因为资源需要更新, 避免更新一次打包一次 动态修改. 2. AB包注意啥? 依赖关系 找依赖关系应该找到对应的平台!!! 3. 打包策略是分场景打包 若文件被文件夹包含打包出来的 ...

  3. 2018.11.07 NOIP训练 L的鞋子(权值分块+莫队)

    传送门 乱搞题. 我直接对权值分块+莫队水过了. 不过调了30min30min30min发现ststst表挂了是真的不想说什么233. 代码

  4. 2018.11.07 bzoj1965: [Ahoi2005]SHUFFLE 洗牌(快速幂+exgcd)

    传送门 发现自己的程序跑得好慢啊233. 管他的反正AC了 先手玩样例找了一波规律发现题目要求的就是a∗2m≡l(modn+1)a*2^m\equiv l \pmod {n+1}a∗2m≡l(modn ...

  5. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  6. 2018.11.07 NOIP训练 lzy的游戏(01背包)

    传送门 考虑对于每次最后全部选完之后剩下的牌的集合都对应着一种构造方法. 一个更接地气的说法: 设消耗的牌数为ttt,如果使用的牌的lll值之和也为ttt,则对应着一种构造方式让这种情形成立. 于是做 ...

  7. 2018.11.07 NOIP模拟 异或(数位dp)

    传送门 对于每个二进制位单独考虑贡献. 然后对于两种情况分别统计. 对于第二种要用类似数位dpdpdp的方法来计算贡献. 代码

  8. 2018.11.07 NOIP模拟 分糖果(贪心)

    传送门 考虑 n = 2 时的情况:假定两个人分别为(a, b),(c, d),则当且仅当min(a,d) ≤ min(b,c)时,把(a, b)放在前面更优,否则把(c, d)放在前面更优 然后把n ...

  9. 2018.11.07 codeforces559C. Gerald and Giant Chess(dp+组合数学)

    传送门 令f[i]f[i]f[i]表示对于第iii个棋子,从(1,1)(1,1)(1,1)出发到它不经过其它棋子的方案数. 于是我们假设(h,w)(h,w)(h,w)有一个棋子,求出它的fff值就可以 ...

随机推荐

  1. Angular之RouterModule的forRoot与forChild

    Angular 提供了一种方式来把服务提供商从模块中分离出来,以便模块既可以带着 providers 被根模块导入,也可以不带 providers 被子模块导入. 区别: `forRoot` crea ...

  2. Java-排序算法-插入排序

    一.插入排序的原理 将一个记录插入到一个已经排好序的有序表中,从而得到一个新的,记录数增1的新的有序表.从第一个元素开始,先将第一个元素看做一个排好序的子序列,然后从第二个元素开始起,对第二个元素进行 ...

  3. Wannafly挑战赛13 C:zzf的好矩阵(思维)

    题目描述 一个8 * 8的棋盘,第一个格子放1个麦穗,第二个格子放2个麦穗,第三个格子放4个麦穗……那么最后,共要放几个麦穗呢? zzf表示这个问题实在太简单,于是重新规定了游戏的规则. 初始的棋盘为 ...

  4. ubuntu系列-安装jdk以及eclipse(for C++)

    1.安装jdk eclipse是使用java语言开发的,一个java应用程序的运行要在java虚拟机下.在没有安装jdk的前提下,即使在ubuntu上安装了eclipse也不能使用. (1)首先在官网 ...

  5. Django的视图函数和路由系统中一些没有用过的小点

    1.request对象 print("返回用户访问的url,但是不包括域名",request.path_info) print("返回请求的方法,全大写",re ...

  6. /usr/local/ 和 /opt

    /usr/local:用户级的程序目录,可以理解为C:/Progrem Files/.用户自己编译的软件默认会安装到这个目录下. /opt:用户级的程序目录,可以理解为D:/Software,opt有 ...

  7. WebApi中Swagger的使用(超级简单)

    Swagger解释 Swagger是一种Rest API的简单但强大的表示方式,她是标准的与语言无关,这种表示方式不但人可读,而且机器可读. 可以作为Rest API的交互式文档,也可以作为Rest ...

  8. git 标签管理

    发布一个版本时,我们通常先在版本库中打一个标签(tag),这样,就唯一确定了打标签时刻的版本.将来无论什么时候,取某个标签的版本,就是把那个打标签的时刻的历史版本取出来.所以,标签也是版本库的一个快照 ...

  9. N! (数组)

    #include <iostream> using namespace std; ; int f[MAXN]; int main(){ int n; cin >> n; f[] ...

  10. Database.SQL.join

    inner join 和 outer join的区别 http://en.wikipedia.org/wiki/Join_%28SQL%29