题意:

首先给你一个长度为n的序列v,你需要首先找出来逆序对(i<j && v[i]>v[j])

然后把这个序列的最后一个元素放在第一个位置上,其他元素都向后移动一位。

一直这样操作,会得到n个序列,问你这n个序列中,哪个序列中的逆序对数最少,并输出

题解:

首先我们可以通过线段树得到最初哪个序列的逆序对数,其实也可以通过归并排序得到,因为我是练习线段树,所以用的线段树写的

线段树求逆序对数的话,我们可以求出来v[i]可以和v[j]形成的逆序对数,这个j的取值范围为1<=j<i,我们可以维护一个最小值,然后得到有多少j能和v[i]构成逆序对

这一点不懂可以看一下代码

对于其他序列,你会发现就只是把最后一个元素放在第一个位置上,其他元素都向后移动一位。

那么原来上一个序列的逆序对数会减少n-v[n],因为对于v[n]元素,它是最后一个元素,那么肯定v[n]+1,v[n]+2...n都可以和v[n]构成逆序对

逆序对数会增加v[n]-1个,因为v[n]移动到第一个位置之后,那么1,2,3...v[n]-1都可以和v[n]构成一个逆序对数

代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=2e5+10;
const int INF=0x3f3f3f3f;
#define ll long long
#define mem(a) memset(a,0,sizeof(a))
#define mem_(a) memset(a,-1,sizeof(a))
#define mem__(a) memset(a,INF,sizeof(a))
int lazy[maxn<<2],tree[maxn<<2],arr[maxn];
void push_up(int root)
{
tree[root]=min(tree[root<<1],tree[root<<1|1]);
}
void build(int root,int L,int R)
{
if(L==R)
{
tree[root]=arr[L];
return;
}
int mid=(L+R)>>1;
build(root<<1,L,mid);
build(root<<1|1,mid+1,R);
push_up(root);
}
void update(int root,int L,int R,int pos,int val)
{
if(L==R)
{
tree[root]=val;
return;
}
int mid=(L+R)>>1;
if(pos<=mid)
update(root<<1,L,mid,pos,val);
else update(root<<1|1,mid+1,R,pos,val);
push_up(root);
}
int query(int root,int L,int R,int LL,int RR,int val)
{
if(LL<=L && R<=RR)
{
if(tree[root]>val)
{
return R-L+1;
}
if(L==R) return 0;
}
int mid=(L+R)>>1,ans=0;
if(LL<=mid) ans+=query(root<<1,L,mid,LL,RR,val);
if(RR>mid) ans+=query(root<<1|1,mid+1,R,LL,RR,val);
return ans;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
int sum=0;
mem__(tree);
//update(1,1,n,1,2);
//printf("%d**\n",query(1,1,n,1,1,1));
for(int i=1;i<=n;++i)
{
//int x;
scanf("%d",&arr[i]);
if(i!=1)
{
sum+=query(1,1,n,1,i-1,arr[i]);
}
update(1,1,n,i,arr[i]);
arr[i]+=1;
}
int minn=sum;
//printf("%d***\n",sum);
for(int i=n;i>1;--i)
{
sum=sum+((arr[i]-1)-(n-arr[i]));
minn=min(sum,minn);
}
printf("%d\n",minn);
}
return 0;
}

hdu 13394 Minimum Inversion Number 线段树的更多相关文章

  1. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  2. [HDU] 1394 Minimum Inversion Number [线段树求逆序数]

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. hdu - 1394 Minimum Inversion Number(线段树水题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1394 很基础的线段树. 先查询在更新,如果后面的数比前面的数小肯定会查询到前面已经更新过的值,这时候返回的sum ...

  4. HDU 1394 Minimum Inversion Number(线段树 或 树状数组)

    题目大意:给出从 0 到 n-1 的整数序列,A0,A1,A2...An-1.可将该序列的前m( 0 <= m < n )个数移到后面去,组成其他的序列,例如当 m=2 时,得到序列 A2 ...

  5. HDU 1394 Minimum Inversion Number 线段树

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=1394 没看到多组输入,WA了一万次...... 其实很简单,有人暴力过得,我感觉归并排序.二叉排序树求逆 ...

  6. HDU-1394 Minimum Inversion Number 线段树+逆序对

    仍旧在练习线段树中..这道题一开始没有完全理解搞了一上午,感到了自己的shabi.. Minimum Inversion Number Time Limit: 2000/1000 MS (Java/O ...

  7. hdu1394(Minimum Inversion Number)线段树

    明知道是线段树,却写不出来,搞了半天,戳,没办法,最后还是得去看题解(有待于提高啊啊),想做道题还是难啊. 还是先贴题吧 HDU-1394 Minimum Inversion Number Time ...

  8. HDU 1394 Minimum Inversion Number (树状数组)

    题目链接 Problem Description The inversion number of a given number sequence a1, a2, ..., an is the numb ...

  9. hdu 1394 Minimum Inversion Number (树状数组求逆序对)

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...

随机推荐

  1. Centos 7 下的KVM虚拟机

    一 什么是KVM虚拟机: KVM虚拟机 Kernel-based Virtual Machine的简称,是一个开源的系统虚拟化模块,自Linux 2.6.20之后集成在Linux的各个主要发行版本中. ...

  2. Maven学习笔记之第一个Maven项目(Linux)

    Maven是Apache旗下的管理Java项目jar包的项目管理工具,有了它可以很方便构建和管理我们的Java项目,你不必在互联网上逐个查找你需要的第三方jar包,你只需在maven reposito ...

  3. 【Oracle】add_months()函数介绍

    add_months 函数主要是对日期函数进行操作,举例子进行说明 add_months 有两个参数,第一个参数是日期,第二个参数是对日期进行加减的数字(以月为单位的) 如:3个月以后的时间,可以用下 ...

  4. pod管理调度约束、与健康状态检查

    pod的管理 [root@k8s-master ~]# vim pod.yaml apiVersion: v1 kind: Pod metadata: name: nginx-pod labels: ...

  5. [XAML] 使用 XAML 格式化工具:XAML Styler

    1. XAML 的问题 刚入门 WPF/UWP 之类的 XAML 平台,首先会接触到 XAML 这一新事物.初学 XAML 时对它的印象可以归纳为一个词:一坨. 随着我在 XAML 平台上工作的时间越 ...

  6. 宝塔的url计划任务

    to通过url访问 就像访问你的网站一样 然后控制器/方法里面写你要做的操作 就可以了 ,简单的一批

  7. bootstrap 后端模板

    Twitter Bootstrap 框架已经广为人知,用于加快网站,应用程序或主题的界面开发,并被公认为是迄今对于 Web 开发的最有实质性帮助的工具之一.在此之前的,各种各样的界面库伴随着高昂的维护 ...

  8. Java基础复习4

    选择排序(擂台排序): public class demo1 {     public static void main(String[] args) {          // TODO Auto- ...

  9. 使用Swagger2

    一.Swagger2是什么? Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务. 优点: 及时性 (接口变更后,能够及时准确地通知相关前后端开 ...

  10. 加密填补 填充 pad padding

    RFC 1423 - Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identi ...